I am a
Home I AM A Search Login

Animal Studies

Share this

α5GABAA receptors play a pro-nociceptive role and avoid the rate dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability.

Diabetic neuropathy is an incapacitating complication in diabetic patients. The cellular and molecular mechanisms involved in this pathology are poorly understood. Previous studies have suggested that the loss of spinal GABAergic inhibition participate in painful diabetic neuropathy. However, the role of extrasynaptic α5 subunit-containing GABAA (α5GABAA) receptors in this process is not known. The purpose of this study was to investigate the role of α5GABAA receptors in diabetes-induced tactile allodynia, loss of rate dependent depression (RDD) of the Hoffmann reflex (HR) and modulation of primary afferent excitability. Intraperitoneal administration of streptozotocin (STZ) induced tactile allodynia. Intrathecal injection of α5GABAA receptor inverse agonist, L-655,708, produced tactile allodynia in naïve rats whereas it reduced allodynia in diabetic rats. In healthy rats, electrical stimulation of the tibial nerve at 5 Hz induced RDD of the HR, although intrathecal treatment with L-655,708 (15 nmol) abolished RDD of the HR. STZ induced the loss of RDD of the HR, while intrathecal L-655,708 (15 nmol) restored RDD of the HR. L-655,708 (15 nmol) increased tonic excitability of the primary afferents without affecting the phasic excitability produced by the primary afferent depolarization. α5GABAA receptors were immunolocalized in superficial laminae of the dorsal horn and L4-L6 DRG. STZ increased mean fluorescence intensity and percentage of neurons expressing α5GABAA receptors in dorsal horn and L4-L6 DRGs in ten-weeks diabetic rats. Our results suggest that spinal α5GABAA receptors modulate the HR, play an antinociceptive and pronociceptive role in healthy and diabetic rats, respectively and are tonically active in primary afferents.

Learn More >

Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain.

Patients with chronic neuropathic pain frequently suffer from symptoms of anhedonia, which is a core symptom of depression. Accumulating studies suggest that gut microbiota may play a role in depression via gut-microbiota-brain axis. However, it is unknown whether gut microbiota plays a role in neuropathic pain-associated anhedonia. Here, we used a rat model of spared nerve injury (SNI). Hierarchical cluster analysis of sucrose preference test (SPT) results was used to classify the SNI rats with or without anhedonia-like phenotype. The 16S ribosomal RNA sequencing analysis showed abnormal composition of gut microbiota in the anhedonia susceptible compared to sham-operated rats and resilient rats. Furthermore, antibiotics-treated mice showed pain as well as depression-like and anhedonia-like phenotypes, suggesting a role of gut microbiota in these abnormal behaviors. Transplantation of fecal microbiota from anhedonia susceptible rats into antibiotics-treated pseudo-germ-free mice significantly exaggerated pain and depression-like phenotypes, including anhedonia. In contrast, transplantation of fecal microbiota from resilient rats into antibiotics-treated pseudo-germ-free mice significantly improved pain and depression-like phenotypes, including anhedonia. In conclusion, this study suggests that abnormal composition of gut microbiota may contribute to anhedonia susceptibility post SNI surgery, and that gut microbiota also plays a role in the pain as well as depression-like phenotypes. Interestingly, fecal microbiota transplantation from SNI rats with or without anhedonia can alter pain, depression-like and anhedonia-like phenotypes in the pseudo-germ-free mice. Therefore, it is likely that gut microbiota plays a key role in the pain as well as depression-like phenotypes including anhedonia in rodents with neuropathic pain.

Learn More >

Essential roles of C-type lectin Mincle in induction of neuropathic pain in mice.

Increasing evidence indicates that pattern recognition receptors (PRRs) are involved in neuropathic pain after peripheral nerve injury (PNI). While a significant number of studies support an association between neuropathic pain and the innate immune response mediated through Toll-like receptors, a family of PRRs, the roles of other types of PRRs are largely unknown. In this study, we have focused on the macrophage-inducible C-type lectin (Mincle), a PRR allocated to the C-type lectin receptor family. Here, we show that Mincle is involved in neuropathic pain after PNI. Mincle-deficient mice showed impaired PNI-induced mechanical allodynia. After PNI, expression of Mincle mRNA was rapidly increased in the injured spinal nerve. Most Mincle-expressing cells were identified as infiltrating leucocytes, although the migration of leucocytes was also observed in Mincle-deficient mice. Furthermore, Mincle-deficiency affected the induction of genes, which are reported to contribute to neuropathic pain after PNI in the dorsal root ganglia and spinal dorsal horn. These results suggest that Mincle is involved in triggering sequential processes that lead to the pathogenesis of neuropathic pain.

Learn More >

Neural indicators of perceptual variability of pain across species.

Individuals exhibit considerable and unpredictable variability in painful percepts in response to the same nociceptive stimulus. Previous work has found neural responses that, while not necessarily responsible for the painful percepts themselves, can still correlate well with intensity of pain perception within a given individual. However, there is no reliable neural response reflecting the variability in pain perception across individuals. Here, we use an electrophysiological approach in humans and rodents to demonstrate that brain oscillations in the gamma band [gamma-band event-related synchronization (γ-ERS)] sampled by central electrodes reliably predict pain sensitivity across individuals. We observed a clear dissociation between the large number of neural measures that reflected subjective pain ratings at within-subject level but not across individuals, and γ-ERS, which reliably distinguished subjective ratings within the same individual but also coded pain sensitivity across different individuals. Importantly, the ability of γ-ERS to track pain sensitivity across individuals was selective because it did not track the between-subject reported intensity of nonpainful but equally salient auditory, visual, and nonnociceptive somatosensory stimuli. These results also demonstrate that graded neural activity related to within-subject variability should be minimized to accurately investigate the relationship between nociceptive-evoked neural activities and pain sensitivity across individuals.

Learn More >

Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale.

Most research laboratories abide by guidelines and mandates set by their research institution regarding the administration of analgesics to control pain during the postoperative period. Unfortunately, measuring pain originating from the head is difficult, making adequate decisions regarding pain control following stereotaxic surgery problematic. In addition, most postsurgical analgesia protocols require multiple injections over several days, which may cause stress and distress during a critical recovery period. Here we sought to (1) assess the degree of postoperative pain following craniotomy in mice, (2) compare the efficacy of three common rodent analgesics (carprofen, meloxicam and buprenorphine) for reducing this pain and (3) determine whether the route of administration (injected or self-administered through the drinking supply) influenced pain relief post-craniotomy. Using the mouse grimace scale (MGS), we found that injectable analgesics were significantly more effective at relieving post-craniotomy pain, however, both routes of administration decreased pain scores in the first 24 h postsurgery. Specifically, buprenorphine administered independently of administration route was the most effective at reducing MGS scores, however, female mice showed greater sensitivity to carprofen when administered through the water supply. Although it is necessary to provide laboratory animals with analgesics after an invasive procedure, there remains a gap in the literature regarding the degree of craniotomy-related pain in rodents and the efficacy of alternative routes of administration. Our study highlights the limitations of administering drugs through the drinking supply, even at doses that are considered to be higher than those currently recommended by most research institutions for treating pain of mild to moderate severity.

Learn More >

Male-specific conditioned pain hypersensitivity in mice and humans.

Pain memories are hypothesized to be critically involved in the transition of pain from an acute to a chronic state. To help elucidate the underlying neurobiological mechanisms of pain memory, we developed novel paradigms to study context-dependent pain hypersensitivity in mouse and human subjects, respectively. We find that both mice and people become hypersensitive to acute, thermal nociception when tested in an environment previously associated with an aversive tonic pain experience. This sensitization persisted for at least 24 hr and was only present in males of both species. In mice, context-dependent pain hypersensitivity was abolished by castrating male mice, pharmacological blockade of the hypothalamic-pituitary-adrenal axis, or intracerebral or intrathecal injections of zeta inhibitory peptide (ZIP) known to block atypical protein kinase C (including the protein kinase Mζ isoform). In humans, men, but not women, self-reported higher levels of stress when tested in a room previously associated with tonic pain. These models provide a new, completely translatable means for studying the relationship between memory, pain, and stress.

Learn More >

Synapse-specific Opioid Modulation of Thalamo-cortico-striatal Circuits.

Learn More >

A Mouse Model of Postoperative Pain.

Postoperative pain is highly debilitating and hinders recovery. Opioids are the main pain medication used for acute postoperative pain. Given the devastating opioid addiction and overdose epidemic across the US, non-opioid pain therapeutics are desperately needed. In order to develop novel, non-opioid therapies for the treatment of postoperative pain and identify the mechanisms underlying this pain, rodent models of incisional pain have been established. The protocol herein describes in detail how to create a mouse model of postoperative pain that was adapted from established protocols. This model of postoperative pain is frequently-used, highly reproducible, and results in peripheral and central nervous system alterations.

Learn More >

Preparation of Acute Spinal Cord Slices for Whole-cell Patch-clamp Recording in Substantia Gelatinosa Neurons.

Recent whole-cell patch-clamp studies from substantia gelatinosa (SG) neurons have provided a large body of information about the spinal mechanisms underlying sensory transmission, nociceptive regulation, and chronic pain or itch development. Implementations of electrophysiological recordings together with morphological studies based on the utility of acute spinal cord slices have further improved our understanding of neuronal properties and the composition of local circuitry in SG. Here, we present a detailed and practical guide for the preparation of spinal cord slices and show representative whole-cell recording and morphological results. This protocol permits ideal neuronal preservation and can mimic in vivo conditions to a certain extent. In summary, the ability to obtain an in vitro preparation of spinal cord slices enables stable current- and voltage-clamp recordings and could thus facilitate detailed investigations into the intrinsic membrane properties, local circuitry and neuronal structure using diverse experimental approaches.

Learn More >

An amygdalar neural ensemble that encodes the unpleasantness of pain.

Pain is an unpleasant experience. How the brain's affective neural circuits attribute this aversive quality to nociceptive information remains unknown. By means of time-lapse in vivo calcium imaging and neural activity manipulation in freely behaving mice encountering noxious stimuli, we identified a distinct neural ensemble in the basolateral amygdala that encodes the negative affective valence of pain. Silencing this nociceptive ensemble alleviated pain affective-motivational behaviors without altering the detection of noxious stimuli, withdrawal reflexes, anxiety, or reward. Following peripheral nerve injury, innocuous stimuli activated this nociceptive ensemble to drive dysfunctional perceptual changes associated with neuropathic pain, including pain aversion to light touch (allodynia). These results identify the amygdalar representations of noxious stimuli that are functionally required for the negative affective qualities of acute and chronic pain perception.

Learn More >

Search