I am a
Home I AM A Search Login

Animal Studies

Share this

Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response.

Learn More >

Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs.

Learn More >

Targeting the β2-integrin LFA-1, reduces adverse neuroimmune actions in neuropathic susceptibility caused by prenatal alcohol exposure.

Recently, moderate prenatal alcohol exposure (PAE) was shown to be a risk factor for peripheral neuropathy following minor nerve injury. This effect coincides with elevated spinal cord astrocyte activation and ex vivo immune cell reactivity assessed by proinflammatory cytokine interleukin (IL) -1β protein expression. Additionally, the β2-integrin adhesion molecule, lymphocyte function-associated antigen-1 (LFA-1), a factor that influences the expression of the proinflammatory/anti-inflammatory cytokine network is upregulated. Here, we examine whether PAE increases the proinflammatory immune environment at specific anatomical sites critical in the pain pathway of chronic sciatic neuropathy; the damaged sciatic nerve (SCN), the dorsal root ganglia (DRG), and the spinal cord. Additionally, we examine whether inhibiting LFA-1 or IL-1β actions in the spinal cord (intrathecal; i.t., route) could alleviate chronic neuropathic pain and reduce spinal and DRG glial activation markers, proinflammatory cytokines, and elevate anti-inflammatory cytokines. Results show that blocking the actions of spinal LFA-1 using BIRT-377 abolishes allodynia in PAE rats with sciatic neuropathy (CCI) of a 10 or 28-day duration. This effect is observed (utilizing immunohistochemistry; IHC, with microscopy analysis and protein quantification) in parallel with reduced spinal glial activation, IL-1β and TNFα expression. DRG from PAE rats with neuropathy reveal significant increases in satellite glial activation and IL-1β, while IL-10 immunoreactivity is reduced by half in PAE rats under basal and neuropathic conditions. Further, blocking spinal IL-1β with i.t. IL-1RA transiently abolishes allodynia in PAE rats, suggesting that IL-1β is in part, necessary for the susceptibility of adult-onset peripheral neuropathy caused by PAE. Chemokine mRNA analyses from SCN, DRG and spinal cord reveal that increased CCL2 occurs following CCI injury regardless of PAE and BIRT-377 treatment. These data demonstrate that PAE creates dysregulated proinflammatory IL-1β and TNFα /IL-10 responses to minor injury in the sciatic-DRG-spinal pain pathway. PAE creates a risk for developing peripheral neuropathies, and LFA-1 may be a novel therapeutic target for controlling dysregulated neuroimmune actions as a consequence of PAE.

Learn More >

Glucagon-Like Peptide-1 receptor agonist treatment does not reduce abuse-related effects of opioid drugs.

Learn More >

The combination of opioid and neurotensin receptor agonists improves their analgesic/adverse effect ratio.

Opioid and neurotensin (NT) receptors are expressed in both central and peripheral nervous systems where they modulate nociceptive responses. Nowadays, opioid analgesics like morphine remain the most prescribed drugs for the treatment of moderate to severe pain. However, despite their daily used, opioids can produce life-threatening side effects, such as constipation or respiratory depression. Besides, NT analogs exert strong opioid-independent analgesia. Here, we thus hypothesized that the combined use of opioid and NT agonists would require lower doses to produce significant analgesic effects, hence decreasing opioid-induced adverse effects. We used isobologram analyses to determine if the combination of a NT brain-penetrant analog, An2-NT(8-13) with morphine results in an inhibitory, synergistic or additive analgesic response. We found that intravenous administration of An2-NT(8-13) reduced by 90% the nocifensive behaviors induced by formalin injection, at the dose of 0.018mg/kg. Likewise, subcutaneous morphine reduced pain by 90% at 1.8mg/kg. Importantly, isobologram analyses revealed that the co-injection of An2-NT(8-13) with morphine induced an additive analgesic response. We finally assessed the effects of morphine and An2-NT(8-13) on the gastrointestinal tract motility using the charcoal meal test. As opposed to morphine which significantly reduced the intestinal motility at the analgesic effective dose of 1.8mg/kg, An2-NT(8-13) did not affect the charcoal meal intestinal transit at 0.018mg/kg. Interestingly, at the dose providing 90% pain relief, the co-administration of morphine with An2-NT(8-13) had a reduced effect on constipation. Altogether, these results suggest that combining NT agonists with morphine may improve its analgesic/adverse effect ratio.

Learn More >

The Analgesic Effect of Venlafaxine and Its Mechanism on Oxaliplatin-Induced Neuropathic Pain in Mice.

The analgesic effect of venlafaxine (VLX), which is a selective serotonin and noradrenaline reuptake inhibitor (SNRI), has been observed on oxaliplatin-induced neuropathic pain in mice. Significant allodynia was shown after oxaliplatin treatment (6 mg/kg, i.p.); acetone and von Frey hair tests were used to assess cold and mechanical allodynia, respectively. Intraperitoneal administration of VLX at 40 and 60 mg/kg, but not 10 mg/kg, significantly alleviated these allodynia. Noradrenaline depletion by pretreatment of -(2-Chloroethyl)–ethyl-2-bromobenzylamine (DSP-4, 50 mg/kg, i.p.) blocked the relieving effect of VLX (40 mg/kg, i.p.) on cold and mechanical allodynia. However, serotonin depletion by three consecutive pretreatments of para-chlorophenylalanine (PCPA, 150 mg/kg/day, i.p.) only blocked the effect of VLX on mechanical allodynia. In cold allodynia, the α₂-adrenergic antagonist idazoxan (10 μg, i.t.), but not the α₁-adrenergic antagonist prazosin (10 μg, i.t.), abolished VLX-induced analgesia. Furthermore, idazoxan and 5-HT₃ receptor antagonist bemesetron (MDL-72222, 15 μg, i.t.), but not prazosin or mixed 5-HT receptor antagonist methysergide (10 μg, i.t.), abolished VLX-induced analgesia in mechanical allodynia. In conclusion, 40 mg/kg of VLX treatment has a potent relieving effect against oxaliplatin-induced neuropathic pain, and α₂-adrenergic receptor, and both α₂-adrenergic and 5-HT₃ receptors are involved in this effect of VLX on cold and mechanical allodynia, respectively.

Learn More >

TRPV1 promotes opioid analgesia during inflammation.

Pain and inflammation are inherently linked responses to injury, infection, or chronic diseases. Given that acute inflammation in humans or mice enhances the analgesic properties of opioids, there is much interest in determining the inflammatory transducers that prime opioid receptor signaling in primary afferent nociceptors. Here, we found that activation of the transient receptor potential vanilloid type 1 (TRPV1) channel stimulated a mitogen-activated protein kinase (MAPK) signaling pathway that was accompanied by the shuttling of the scaffold protein β-arrestin2 to the nucleus. The nuclear translocation of β-arrestin2 in turn prevented its recruitment to the μ-opioid receptor (MOR), the subsequent internalization of agonist-bound MOR, and the suppression of MOR activity that occurs upon receptor desensitization. Using the complete Freund's adjuvant (CFA) inflammatory pain model to examine the role of TRPV1 in regulating endogenous opioid analgesia in mice, we found that naloxone methiodide (Nal-M), a peripherally restricted, nonselective, and competitive opioid receptor antagonist, slowed the recovery from CFA-induced hypersensitivity in wild-type, but not TRPV1-deficient, mice. Furthermore, we showed that inflammation prolonged morphine-induced antinociception in a mouse model of opioid receptor desensitization, a process that depended on TRPV1. Together, our data reveal a TRPV1-mediated signaling pathway that serves as an endogenous pain-resolution mechanism by promoting the nuclear translocation of β-arrestin2 to minimize MOR desensitization. This previously uncharacterized mechanism may underlie the peripheral opioid control of inflammatory pain. Dysregulation of the TRPV1-β-arrestin2 axis may thus contribute to the transition from acute to chronic pain.

Learn More >

Oral Lactobacillus reuteri LR06 or Bifidobacterium BL5b supplement do not produce analgesic effects on neuropathic and inflammatory pain in rats.

Previous studies have reported that certain bacteria exert visceral antinociceptive activity in visceral pain and may also help to relieve neuropathic and inflammatory pain.

Learn More >

Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance, physical dependence in vivo and synergize with paclitaxel to reduce tumor c

Activation of cannabinoid CB receptors suppresses pathological pain but also produces unwanted side effects, including tolerance and physical dependence. Inhibition of fatty-acid amide hydrolase (FAAH), the major enzyme catalyzing the degradation of anandamide (AEA), an endocannabinoid, and other fatty-acid amides, suppresses pain without unwanted side effects typical of direct CB agonists. However, FAAH inhibitors have failed to show efficacy in several clinical trials suggesting that the right partnership of FAAH inhibition and pathology has yet to be identified. We compared efficacy of chronic treatments with a centrally penetrant FAAH inhibitor (URB597), a peripherally-restricted FAAH inhibitor (URB937) and an orthosteric pan-cannabinoid agonist (WIN55,212-2) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Each FAAH inhibitor suppressed the development of paclitaxel-induced neuropathic pain and reduced the maintenance of already established allodynia with sustained efficacy. Tolerance developed to the anti-allodynic efficacy of WIN55,212-2, but not to that of URB597 or URB937, in each dosing paradigm. Challenge with the CB antagonist rimonabant precipitated CB-dependent withdrawal in paclitaxel-treated mice receiving WIN55,212-2 but not URB597 or URB937. When dosing with either URB597 or URB937 was restricted to the development of neuropathy, paclitaxel-induced allodynia emerged following termination of drug delivery. These observations suggest that both FAAH inhibitors were anti-allodynic rather than curative. Moreover, neither URB597 nor URB937 impeded the ability of paclitaxel to reduce breast (4T1) or ovarian (HeyA8) tumor cell line cytotoxicity. In fact, URB597 and URB937 alone reduced 4T1 tumor cell line cytotoxicity, albeit with low potency, and the dose matrix of each combination with paclitaxel was synergistic in reducing 4T1 and HeyA8 tumor cell line viability according to Bliss, Highest Single Agent (HSA) and Loewe additivity models. Both FAAH inhibitors synergized with paclitaxel to reduce 4T1 and HeyA8 tumor cell line viability without reducing viability of non-tumor HEK293 cells. Neither FAAH inhibitor reduced viability of non-tumor HEK293 cells in either the presence or absence of paclitaxel, suggesting that nonspecific cytotoxic effects were not produced by the same treatments. Our results suggest that FAAH inhibitors reduce paclitaxel-induced allodynia without the occurrence of CB-dependence in vivo and may, in fact, enhance the anti-tumor actions of paclitaxel in vitro.

Learn More >

Conditioned pain modulation in rodents can feature hyperalgesia or hypoalgesia depending on test stimulus intensity.

The counterirritation phenomenon known as conditioned pain modulation, or diffuse noxious inhibitory control in animals, is of increasing interest due to its utility in predicting chronic pain and treatment response. It features considerable interindividual variability, with large subsets of pain patients and even normal volunteers exhibiting hyperalgesia rather than hypoalgesia during or immediately after receiving a conditioning stimulus. We observed that mice undergoing tonic inflammatory pain in the abdominal cavity (the conditioning stimulus) display hyperalgesia, not hypoalgesia, to noxious thermal stimulation (the test stimulus) applied to the hindpaw. In a series of parametric studies, we show that this hyperalgesia can be reliably observed using multiple conditioning stimuli (acetic acid and orofacial formalin), test stimuli (hindpaw and forepaw-withdrawal, tail-withdrawal, hot-plate, and von Frey tests) and genotypes (CD-1, DBA/2, and C57BL/6 mice and Sprague-Dawley rats). Although the magnitude of the hyperalgesia is dependent on the intensity of the conditioning stimulus, we find that the direction of effect is dependent on the effective test stimulus intensity, with lower-intensity stimuli leading to hyperalgesia and higher-intensity stimuli leading to hypoalgesia.

Learn More >

Search