I am a
Home I AM A Search Login

Animal Studies

Share this

Naja atra venom peptide reduces pain by selectively blocking the voltage-gated sodium channel Nav1.8.

The voltage-gated sodium channel Nav1.8 is preferentially expressed in peripheral nociceptive neurons and contributes to inflammatory and neuropathic pain. Therefore, Nav1.8 has emerged as one of the most promising analgesic targets for pain relief. Using large-scale screening of various animal-derived toxins and venoms for Nav1.8 inhibitors, here we identified μ-EPTX-Na1a, a 62-residue three-finger peptide from the venom of the Chinese cobra (), as a potent inhibitor of Nav1.8, exhibiting high selectivity over other voltage-gated sodium channel subtypes. Using whole-cell voltage-clamp recordings, we observed that purified μ-EPTX-Na1a blocked the Nav1.8 current. This blockade was associated with a depolarizing shift of activation and repolarizing shift of inactivation, a mechanism distinct from that of any other gating modifier toxin identified to date. In rodent models of inflammatory and neuropathic pain, μ-EPTX-Na1a alleviated nociceptive behaviors more potently than did morphine, indicating that μ-EPTX-Na1a has a potent analgesic effect. μ-EPTX-Na1a displayed no evident cytotoxicity and cardiotoxicity, and produced no obvious adverse responses in mice even at a dose 30-fold higher than that producing a significant analgesic effect. Our study establishes μ-EPTX-Na1a as a promising lead for the development of Nav1.8-targeting analgesics to manage pain.

Learn More >

Effects of two isometheptene enantiomers in isolated human blood vessels and rat middle meningeal artery – potential antimigraine efficacy.

Racemic isometheptene [(RS)-isometheptene] is an antimigraine drug that due to its cardiovascular side-effects was separated into its enantiomers, (R)- and (S)-isometheptene. This study set out to characterize the contribution of each enantiomer to its vasoactive profile. Moreover, rat neurogenic dural vasodilatation was used to explore their antimigraine mechanism of action.

Learn More >

MicroRNA-211-5p Enhances Analgesic Effect of Dexmedetomidine on Inflammatory Visceral Pain in Rats by Suppressing ERK Signaling.

Dexmedetomidine (DEX) is a high-selectivity α2 adrenergic receptor agonist. The present study aimed to characterize the analgesic effects of DEX on TNBS-induced chronic inflammatory visceral pain (CIVP) in rats and to evaluate whether its antinociceptive effect is regulated by microRNAs (miRNAs) and the ERK pathway. TNBS with or without DEX was administered to 60 male Sprague-Dawley rats. These rats were randomly classified into four groups: control, TNBS, vehicle, and DEX groups. Pain behaviors were assessed by the abdominal withdrawal reflex (AWR), thermal withdrawal latency (TWL), and mechanical withdrawal threshold (MWT). qPCR, ELISA, and western blotting results showed increased serum IL-1β, TNF-α, and IL-6 levels. RNA microarray and qPCR results indicated that miR-211 was downregulated by CIVP induction but upregulated by DEX administration. ERK signaling was decreased in the TNBS+miR-211 group and increased in the DEX + miR-211 group, indicating that miR-211 targeted the 3'-UTR of the ERK gene. Moreover, ectopic expression of miR-211 in these two groups ameliorated pain behaviors and reduced proinflammatory cytokine production. Therefore, DEX exhibited an analgesic effect on CIVP in rats through a miR-211-mediated MEK/ERK/CREB pathway, suppressing visceral hypersensitivity.

Learn More >

Spinal cytochrome P450c17 plays a key role in the development of neuropathic mechanical allodynia: Involvement of astrocyte sigma-1 receptors.

While evidence indicates that sigma-1 receptors (Sig-1Rs) play an important role in the induction of peripheral neuropathic pain, there is limited understanding of the role that the neurosteroidogenic enzymes, which produce Sig-1R endogenous ligands, play during the development of neuropathic pain. We examined whether sciatic nerve injury upregulates the neurosteroidogenic enzymes, cytochrome P450c17 and 3β-hydroxysteroid dehydrogenase (3β-HSD), which modulate the expression and/or activation of Sig-1Rs leading to the development of peripheral neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of P450c17, but not 3β-HSD, in the ipsilateral lumbar spinal cord dorsal horn at postoperative day 3. Intrathecal administration of the P450c17 inhibitor, ketoconazole during the induction phase of neuropathic pain (day 0 to day 3 post-surgery) significantly reduced the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw. However, administration of the 3β-HSD inhibitor, trilostane had no effect on the development of neuropathic pain. Sciatic nerve injury increased astrocyte Sig-1R expression as well as dissociation of Sig-1Rs from BiP in the spinal cord. These increases were suppressed by administration of ketoconazole, but not by administration of trilostane. Co-administration of the Sig-1R agonist, PRE084 restored the development of mechanical allodynia originally suppressed by the ketoconazole administration. However, ketoconazole-induced inhibition of thermal hyperalgesia was not affected by co-administration of PRE084. Collectively these results demonstrate that early activation of P450c17 modulates the expression and activation of astrocyte Sig-1Rs, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.

Learn More >

Discovery of NR2B-selective antagonists via scaffold hopping and pharmacokinetic profile optimization.

Selective N-methyl-d-aspartate receptor subunit 2B (NR2B) antagonists show potential as analgesic drugs, and do not cause side effects associated with non-selective N-methyl-d-aspartate (NMDA) antagonists. Using a scaffold-hopping approach, we previously identified isoxazole derivative 4 as a potent selective NR2B antagonist. In this study, further scaffold hopping of isoxazole derivative 4 and optimization of its pharmacokinetic profile led to the discovery of the orally bioavailable compound 6v. In a rat study of analgesia, 6v demonstrated analgesic effects against neuropathic pain.

Learn More >

Distinguishing analgesic drugs from non-analgesic drugs based on brain activation in macaques with oxaliplatin-induced neuropathic pain.

The antineoplastic agent oxaliplatin is a first-line treatment for colorectal cancer. However, neuropathic pain, characterized by hypersensitivity to cold, emerges soon after treatment. In severe instances, dose reduction or curtailing treatment may be necessary. While a number of potential treatments for oxaliplatin-induced neuropathic pain have been proposed based on preclinical findings, few have demonstrated efficacy in randomized, placebo-controlled clinical studies. This failure could be related, in part, to the use of rodents as the primary preclinical species, as there are a number of distinctions in pain-related mechanisms between rodents and humans. Also, an indicator of preclinical pharmacological efficacy less subjective than behavioral endpoints that is translatable to clinical usage is lacking. Three days after oxaliplatin treatment in Macaca fascicularis, a significantly reduced response latency to cold (10C) water was observed, indicating cold hypersensitivity. Cold-evoked bilateral activation of the secondary somatosensory (SII) and insular (Ins) cortex was observed with functional magnetic resonance imaging. Duloxetine alleviated cold hypersensitivity and significantly attenuated activation in both SII and Ins. By contrast, neither clinically used analgesics pregabalin nor tramadol affected cold hypersensitivity and cold-evoked activation of SII and Ins. The current findings suggest that suppressing SII and Ins activation leads to antinociception, and, therefore, could be used as a non-behavioral indicator of analgesic efficacy in patients with oxaliplatin-induced neuropathic pain.

Learn More >

Endogenous TRPA1 and TRPV1 activity potentiates glutamatergic input to spinal lamina I neurons in inflammatory pain.

Inflammatory pain is associated with peripheral and central sensitization, but the underlying synaptic plasticity at the spinal cord level is poorly understood. Transient receptor potential (TRP) channels expressed at peripheral nerve endings, including TRPA1 and TRPV1, can detect nociceptive stimuli. In this study, we determined the contribution of presynaptic TRPA1 and TRPV1 at the spinal cord level to regulating nociceptive drive in chronic inflammatory pain induced by treatment with complete Freund's adjuvant (CFA) in rats. CFA treatment caused a large increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in lamina I, but not lamina II outer zone, dorsal horn neurons. However, blocking NMDA receptors had no effect on spontaneous EPSCs in lamina I neurons of CFA-treated rats. Application of a specific TRPA1 antagonist, AM-0902, or of a specific TRPV1 antagonist, 5'-iodoresiniferatoxin, significantly attenuated the elevated frequency of spontaneous EPSCs and miniature EPSCs, the amplitude of monosynaptic EPSCs evoked from the dorsal root in lamina I neurons of CFA-treated rats. AM-0902 and 5'-iodoresiniferatoxin had no effect on evoked or miniature EPSCs in lamina I neurons of vehicle-treated rats. In addition, intrathecal injection of AM-0902 or 5'-iodoresiniferatoxin significantly reduced pain hypersensitivity in CFA-treated rats but had no effect on acute nociception in vehicle-treated rats. These findings suggest that chronic inflammatory pain is associated with NMDA receptor-independent potentiation in glutamatergic drive to spinal lamina I neurons. Endogenous presynaptic TRPA1 and TRPV1 activity at the spinal level contributes to increased nociceptive input from primary sensory nerves to dorsal horn neurons in inflammatory pain. This article is protected by copyright. All rights reserved.

Learn More >

Effects of tanezumab on satellite glial cells in the cervicothoracic ganglion of cynomolgus monkeys: A 26-week toxicity study followed by an 8-week recovery period.

Tanezumab, a humanized monoclonal anti-NGF antibody, has demonstrated efficacy and safety profiles in Phase III clinical trials of chronic pain. In a 24-week study in non-human primates, morphological observations of sympathetic ganglia showed decreased ganglia volume, decreased neuronal size, and increased glial cell density compared with controls after 3 tanezumab treatments. Using stereological techniques to quantify glial cells, the present 26-week study found no significant difference after weekly treatments in total cervicothoracic ganglia satellite glial cell number between placebo- or tanezumab-treated cynomolgus monkeys. These findings suggest that tanezumab treatment does not result in a true gliosis in sympathetic ganglia.

Learn More >

Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6GABA receptors.

GABA receptors containing the α6 subunit are located in trigeminal ganglia, and their reduction by small interfering RNA increases inflammatory temporomandibular and myofascial pain in rats. We thus hypothesized that enhancing their activity may help in neuropathic syndromes originating from the trigeminal system. Here, we performed a detailed electrophysiological and pharmacokinetic analysis of two recently developed deuterated structurally similar pyrazoloquinolinone compounds. DK-I-56-1 at concentrations below 1 μM enhanced GABA currents at recombinant rat α6β3γ2, α6β3δ and α6β3 receptors whereas it was inactive at most GABA receptor subtypes containing other α subunits. DK-I-87-1 at concentrations below 1 μM was inactive at α6-containing receptors and only weakly modulated other GABA receptors investigated. Both plasma and brain tissue kinetics of DK-I-56-1 were relatively slow, with half-lives of 6 h and 13 h, respectively, enabling the persistence of estimated free brain concentrations in the range 10-300 nM throughout a 24-h period. Results obtained in two protocols of chronic constriction injury of the infraorbital nerve in rats dosed intraperitoneally with DK-I-56-1 during 14 days after surgery, or with DK-I-56-1 or DK-I-87-1 during 14 days after trigeminal neuropathy was already established, demonstrated that DK-I-56-1 but not DK-I-87-1 significantly reduced the hypersensitivity response to von Frey filaments. This article is protected by copyright. All rights reserved.

Learn More >

Neural stem cell transplantation inhibits glial cell proliferation and P2X receptor-mediated neuropathic pain in spinal cord injury rats.

P2X4 and P2X7 receptors play an important role in neuropathic pain after spinal cord injury. Regulation of P2X4 and P2X7 receptors can obviously reduce pain hypersensitivity after injury. To investigate the role of neural stem cell transplantation on P2X receptor-mediated neuropathic pain and explore related mechanisms, a rat model of spinal cord injury was prepared using the free-falling heavy body method with spinal cord segment 10 as the center. Neural stem cells were injected into the injured spinal cord segment using a micro-syringe. Expression levels of P2X4 and P2X7 receptors, neurofilament protein, and glial fibrillary acidic protein were determined by immunohistochemistry and western blot assay. In addition, sensory function was quantitatively assessed by current perception threshold. The Basso-Beattie-Bresnahan locomotor rating scale was used to assess neuropathological pain. The results showed that 4 weeks after neural stem cell transplantation, expression of neurofilament protein in the injured segment was markedly increased, while expression of glial fibrillary acidic protein and P2X4 and P2X7 receptors was decreased. At this time point, motor and sensory functions of rats were obviously improved, and neuropathic pain was alleviated. These findings demonstrated that neural stem cell transplantation reduced overexpression of P2X4 and P2X7 receptors, activated locomotor and sensory function reconstruction, and played an important role in neuropathic pain regulation after spinal cord injury. Therefore, neural stem cell transplantation is one potential option for relieving neuropathic pain mediated by P2X receptors.

Learn More >

Search