I am a
Home I AM A Search Login

Animal Studies

Share this

Spinal Nitric Oxide Synthase Type II Increases Neurosteroid-metabolizing Cytochrome P450c17 Expression in a Rodent Model of Neuropathic Pain.

We have previously demonstrated that the neurosteroid dehydroepiandrosterone sulfate (DHEAS) induces functional potentiation of -methyl-D-aspartate (NMDA) receptors via increases in phosphorylation of NMDA receptor GluN1 subunit (pGluN1). However, the modulatory mechanisms responsible for the expression of the DHEA-synthesizing enzyme, cytochrome P450c17 following peripheral nerve injury have yet to be examined. Here we determined whether oxidative stress induced by the spinal activation of nitric oxide synthase type II (NOS-II) modulates the expression of P450c17 and whether this process contributes to the development of neuropathic pain in rats. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of NOS-II in microglial cells and NO levels in the lumbar spinal cord dorsal horn at postoperative day 5. Intrathecal administration of the NOS-II inhibitor, L-NIL during the induction phase of neuropathic pain (postoperative days 0~5) significantly reduced the CCI-induced development of mechanical allodynia and thermal hyperalgesia. Sciatic nerve injury increased the expression of PKCand PKA-dependent pGluN1 as well as the mRNA and protein levels of P450c17 in the spinal cord at postoperative day 5, and these increases were suppressed by repeated administration of L-NIL. Co-administration of DHEAS together with L-NIL restored the development of neuropathic pain and pGluN1 that were originally inhibited by L-NIL administration alone. Collectively these results provide strong support for the hypothesis that activation of NOS-II increases the mRNA and protein levels of P450c17 in the spinal cord, ultimately leading to the development of central sensitization and neuropathic pain induced by peripheral nerve injury.

Learn More >

The enteric nervous system of the human and mouse colon at a single-cell resolution.

Learn More >

Granulocyte-colony stimulating factor-induced neutrophil recruitment provides opioid-mediated endogenous anti-nociception in female mice with oral squamous cell carcinoma.

Learn More >

Macrophage toll-like receptor 9 contributes to chemotherapy-induced neuropathic pain in male mice.

Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem, however our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study we examined the role of TLR9 in CIPN induced by paclitaxel in wild-type and mutant mice of both sexes. Baseline pain sensitivity was not affected in either mutant male or female mice. Intraplantar and intrathecal injection of the TLR9 agonist ODN 1826 induced mechanical allodynia in both sexes of wild-type and knockout mice but failed to do so in mutant mice. Moreover, knockout or C-fiber blockade by resiniferatoxin failed to affect intraplantar ODN 1826-induced mechanical allodynia. Interestingly, the development of paclitaxel-evoked mechanical allodynia was attenuated by TLR9 antagonism or mutation only in male mice. Paclitaxel-induced CIPN caused macrophage infiltration to dorsal root ganglia (DRG) in both sexes, and this infiltration was not affected by mutation. Paclitaxel treatment also upregulated TNF and CXCL1 in macrophage cultures and DRG tissues in both sexes, but these changes were compromised by mutation in male animals. Intraplantar adoptive transfer of paclitaxel-activated macrophages evoked mechanical allodynia in both sexes, which was compromised by mutation or by treatment with TLR9 inhibitor only in male animals. Finally, TLR9 antagonism reduced paclitaxel-induced mechanical allodynia in female nude mice (T cell and B cell deficient). Together, these findings reveal sex-dimorphic macrophage TLR9 signaling in chemotherapy-induced neuropathic pain.Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect in cancer patients undergoing clinical chemotherapy treatment regimens. The role of sex-dimorphism with regards to the mechanisms of CIPN and analgesia against CIPN remains unclear. Previous studies have found that the infiltration of immune cells such as macrophages into dorsal root ganglia (DRG) and their subsequent activation promote CIPN. Interestingly, the contribution of microglia to CIPN appears to be limited. Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex-dimorphism in CIPN, which may inspire the development of more precise and effective therapies.

Learn More >

Differences between dorsal root and trigeminal ganglion nociceptors in mice revealed by translational profiling.

Nociceptors located in the TG and DRG are the primary sensors of damaging or potentially damaging stimuli for the head and body, respectively, and are key drivers of chronic pain states. While nociceptors in these two tissues show a high degree of functional similarity, there are important differences in their development lineages, their functional connections to the central nervous system, and recent genome-wide analyses of gene expression suggest that they possess some unique genomic signatures. Here, we used translating ribosome affinity purification (TRAP) to comprehensively characterize and compare mRNA translation in -positive nociceptors in the TG and DRG of male and female mice. This unbiased method independently confirms several findings of differences between TG and DRG nociceptors described in the literature but also suggests preferential utilization of key signaling pathways. Most prominently, we provide evidence that translational efficiency in mechanistic target of rapamycin (mTOR)-related genes is higher in the TG compared to DRG while several genes associated with the negative regulator of mTOR, AMPK activated protein kinase (AMPK), have higher translational efficiency in DRG nociceptors. Using capsaicin as a sensitizing stimulus we show that behavioral responses are greater in the TG region and this effect is completely reversible with mTOR inhibition. These findings have implications for the relative capacity of these nociceptors to be sensitized upon injury. Altogether, our data provide a comprehensive, comparative view of transcriptome and translatome activity in TG and DRG nociceptors that enhances our understanding of nociceptor biology.The DRG and TG provide sensory information from the body and head, respectively. Nociceptors in these tissues are critical first neurons in the pain pathway. Injury to peripheral neurons in these tissues can cause chronic pain. Interestingly, clinical and preclinical findings support the conclusion that injury to TG neurons is more likely to cause chronic pain and chronic pain in the TG area is more intense and more difficult to treat. We used TRAP technology to gain new insight into potential differences in the translatomes of DRG and TG neurons. Our findings demonstrate previously unrecognized differences between TG and DRG nociceptors that provide new insight into how injury may differentially drive plasticity states in nociceptors in these two tissues.

Learn More >

Galanin inhibits visceral afferent responses to noxious mechanical and inflammatory stimuli.

Learn More >

Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors.

Tactile information is detected by thermoreceptors and mechanoreceptors in the skin and integrated by the central nervous system to produce the perception of somatosensation. Here we investigate the mechanism by which thermal and mechanical stimuli begin to interact and report that it is achieved by the mechanotransduction apparatus in cutaneous mechanoreceptors. We show that moderate cold potentiates the conversion of mechanical force into excitatory current in all types of mechanoreceptors from mice and tactile-specialist birds. This effect is observed at the level of mechanosensitive Piezo2 channels and can be replicated in heterologous systems using Piezo2 orthologs from different species. The cold sensitivity of Piezo2 is dependent on its blade domains, which render the channel resistant to cold-induced perturbations of the physical properties of the plasma membrane and give rise to a different mechanism of mechanical activation than that of Piezo1. Our data reveal that Piezo2 is an evolutionarily conserved mediator of thermal-tactile integration in cutaneous mechanoreceptors.

Learn More >

SUMOylation regulates USP5-Cav3.2 calcium channel interactions.

Cav3.2 calcium channels play a key role in nociceptive signaling in the primary afferent pain pathway. We have previously reported the regulation of Cav3.2 calcium channels by the deubiquitinase USP5 and its importance for regulating peripheral transmission of pain signals. Here we describe the regulation of the Cav3.2-USP5 interaction by SUMOylation. We show that endogenous USP5 protein expressed in dorsal root ganglia undergoes SUMOylation, and the level of USP5 SUMOylation is reduced following peripheral nerve injury. SUMO prediction software identified several putative lysines that have the propensity to be targets for SUMO conjugation. A series of single lysine substitutions in an mCherry tagged USP5 construct followed by expression in tsA-201 cells identified lysine K113 as a key target for USP5 SUMO2/3 modification. Finally, Cav3.2 calcium channel immunoprecipitates revealed a stronger interaction of Cav3.2 with a SUMO2/3 resistant USP5-K113R mutant, indicating that SUMO2/3 modification of USP5 reduces its affinity for the calcium channel Cav3.2. Collectively, our data suggest that dysregulation of USP5 SUMOylation after peripheral nerve injury may contribute to the well described alteration in Cav3.2 channel activity during neuropathic pain states.

Learn More >

MiR-34a is differentially expressed in dorsal root ganglia in a rat model of chronic neuropathic pain.

Recent evidence shows that numerous microRNAs (miRNAs) regulate pain-related genes in chronic pain. The aim of the present study was to further explore the regulation of miRNAs and their effect on the expression of pain-associated target genes in experimental neuropathic pain.

Learn More >

Empathic contagious pain and consolation in laboratory rodents: species and sex differences.

Learn More >

Search