I am a
Home I AM A Search Login

Animal Studies

Share this

Nociceptive mechanisms involved in the acute and chronic phases of a complex regional pain syndrome type 1 model in mice.

Complex regional pain syndrome I (CRPS-I) is a chronic painful pathology still undertreated. CTK 01512-2 is a recombinant version of the spider peptide Phα1β, and it functions as a voltage-gated calcium channel blocker and a transient receptor potential ankyrin 1 (TRPA1) antagonist with antinociceptive effect in different pain models. Here, we investigate the mechanisms involved in the acute and chronic nociceptive phases of a model of CPRS-I in mice and assess the antinociceptive effect of CTK 01512-2 using this model. Adult male and female mice C57BL/6 (20-30 g) were used to determine mechanical (von Frey test) or cold (acetone test) allodynia induction. Inflammatory parameters (serum and tibial nerve lactate levels, hind paw temperature and edema, or tissue cell infiltration) were evaluated after chronic post-ischemia pain (CPIP, a model of CPRS-I) induction. Anti-inflammatory and anti-neuropathic drugs or CTK 01512-2 were tested. First, we detected that CPIP-induced mechanical and cold allodynia in male and female mice in a similar way. In the acute phase (1 day after CPIP), an increase in inflammatory parameters were observed, as well as the anti-allodynic effect of anti-inflammatory compounds. In the chronic phase (17 days after CPIP), mice exhibited mechanical and cold allodynia, and anti-neuropathic drugs induced antinociception, while no inflammatory alterations were found. CTK 01512-2 reversed the CPIP allodynic effect in both nociceptive phases. Thus, this CPRS-I model can be used to understand the mechanisms involved in CPRS-I induced pain and inflammation. Besides, we observed that CTK 01512-2 has a valuable antinociceptive effect in this pain model.

Learn More >

Advanced glycation endproducts produced by in vitro glycation of type I collagen modulate the functional and secretory behavior of dorsal root ganglion cells cultivated in two-dimensional system.

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.

Learn More >

Dysregulation of p53 and Parkin Induce Mitochondrial Dysfunction and Leads to the Diabetic Neuropathic Pain.

p53 and parkin are involved in mitochondrial quality control. The present study aimed to characterize the functional significance of parkin/p53 in the development of mitochondrial dysfunction and the pathophysiology of neuropathic pain in type I diabetes. Type I diabetes was induced in mice (N = 170) using streptozotocin (STZ). Pifithrin-α, a selective p53 inhibitor, was administered to assess its effects on diabetic pain hypersensitivity, parkin expression and mitochondrial function. Expressions of parkin and p53, mitochondrial number and level of reactive oxygen species (ROS) in the dorsal root ganglion (DRG) were analyzed by immunohistochemistry, western blotting and real time PCR. Separately, mice were treated using intravenous methylglyoxal, then pain hypersensitivity and p53/parkin expression in the DRG were assessed. Mitochondrial membrane potential was also analyzed in cultured DRG neurons treated with methylglyoxal. Mice developed pain hypersensitivity for 3 weeks after STZ treatment. p53 expression was significantly increased (control, 0.68 ± 0.122; STZ, 1.88 ± 0.21) whereas parkin expression was significantly reduced (control, 1.02 ± 0.17; STZ, 0.59 ± 0.14), in the DRG after STZ treatment. Inhibition of p53 by pifithrin-α prevented STZ-induced pain hypersensitivity and parkin downregulation. Pifithrin-α also inhibited STZ-induced reductions in mitochondrial number and accumulation of mitochondrial ROS. Methylglyoxal elicited pain hypersensitivity and alteration of p53/parkin expression, similar to STZ. Methylglyoxal also decreased mitochondrial membrane potential in cultured DRG neurons. Alteration of p53/parkin expression produces mitochondrial dysfunction and ROS accumulation, leading to pain hypersensitivity in diabetic or methylglyoxal treated mice. Methylglyoxal produces neurological derangements similar to diabetes, via direct mechanisms on DRG neurons.

Learn More >

Expression of Neuropeptide FF Defines a Population of Excitatory Interneurons in the Superficial Dorsal Horn of the Mouse Spinal Cord that Respond to Noxious and Pruritic Stimuli.

The great majority of neurons in the superficial dorsal horn of the spinal cord are excitatory interneurons, and these are required for the normal perception of pain and itch. We have previously identified 5 largely non-overlapping populations among these cells, based on the expression of four different neuropeptides (cholecystokinin, neurotensin, neurokinin B and substance P) and of green fluorescent protein driven by the promoter for gastrin-releasing peptide (GRP) in a transgenic mouse line. Another peptide (neuropeptide FF, NPFF) has been identified among the excitatory neurons, and here we have used an antibody against the NPFF precursor (pro-NPFF) and a probe that recognises Npff mRNA to identify and characterise these cells. We show that they are all excitatory interneurons, and are separate from the five populations listed above, accounting for ~6% of the excitatory neurons in laminae I-II. By examining phosphorylation of extracellular signal-regulated kinases, we show that the NPFF cells can respond to different types of noxious and pruritic stimulus. Ablation of somatostatin-expressing dorsal horn neurons has been shown to result in a dramatic reduction in mechanical pain sensitivity, while somatostatin released from these neurons is thought to contribute to itch. Since the great majority of the NPFF cells co-expressed somatostatin, these cells may play a role in the perception of pain and itch.

Learn More >

Claudin-12 deficiency causes nerve barrier breakdown, mechanical hypersensitivity and painful neuropathy.

Learn More >

Role of DLC2 and RhoA/ROCK pathway in formalin induced inflammatory pain in mice.

Deficiency of deleted in liver cancer 2 (DLC2), a novel domain to inhibit RhoA activity, plays an important role in inflammatory pain. However, the underlying mechanisms remain unclear. This study investigated the role of DLC2 and its downstream cascade of RhoA/ROCK in formalin-induced inflammatory pain using DLC2-knockout (DLC2) mice and compared them with DLC2 wild-type (DLC2) mice. Mechanical allodynia and thermal hyperalgesia were evaluated using von Frey filament aesthesiometer and Hargreaves test, respectively. The spinal cord dorsal horn (L3-L5) was selected for molecular and cellular identification by Western blot and immunofluorescence. DLC2 mice showed increased mechanical allodynia and thermal hyperalgesia. Expression of ROCK1, ROCK2 and IL-1β was significantly higher in DLC2 mice. Intrathecal administration of RhoA inhibitor (C3 exoenzyme) or ROCK inhibitor (Y27632) significantly attenuated formalin-induced inflammatory hyperalgesia in DLC2 mice. ROCK2 and IL-1β expression were reduced by C3 exoenzyme or Y27632. Spinal p38 activation was also inhibited by C3 exoenzyme or Y27632. Double-labelling immunofluorescence demonstrated co-localization of DLC2 with spinal dorsal microglia. The number of activated microglia in the spinal dorsal horn was significantly higher in DLC2 mice, but was reduced by Y27632. These findings indicate that DLC2 deficiency increased formalin-induced inflammatory hyperalgesia through regulating RhoA/ROCK2, and IL-1β may be a downstream effector. Our results also suggest that RhoA/ROCK enhanced p38 activation plays an important role in formalin-induced inflammatory pain. The finding that DLC2 attenuated inflammatory pain through inhibiting RhoA/ROCK2 suggests that the DLC2/RhoA/ROCK2/p38/IL-β pathway may be a potential therapeutic target to reduce inflammatory pain.

Learn More >

The role of dorsal root ganglia PIM1 in peripheral nerve injury-induced neuropathic pain.

Neuropathic pain induced by peripheral nerve injury is a complex and chronic state that is accompanied by poor quality of life. However, whether PIM1 (proviral integration site 1) contributes to the development of nociceptive hypersensitivity induced by nerve injury remains unknown. The present study was designed to investigate the effects of PIM1 on spinal nerve ligation (SNL) induced pain hypersensitivity. Here, we found that PIM1 positive neurons in the dorsal root ganglion (DRG) were colocalized with nociceptive neuronal markers CGRP, IB4 and substance P and were upregulated after SNL surgery. Knockdown PIM1 in the DRG by AAV5-shPIM1 alleviated SNL-induced pain hypersensitivity. In neuroblastoma cells (neuro-2a), PIM1 regulated the expression of CXCR4 phosphorylated at ser339 (pCXCR4) as well as the CXCL12/CXCR4 pathway. In the DRG tissues, we found that PIM1 was co-expressed with CXCR4, and knockdown of PIM1 attenuated pCXCR4 (ser339) protein expression but had little effect on total CXCR4 protein expression after SNL surgery. These findings suggest that PIM1 contributes to nerve injury-induced nociceptive hypersensitivity. Based on these findings and the characteristics of PIM1, we speculate that PIM1 might be a viable therapeutic target for the treatment of neuropathic pain in the near future.

Learn More >

Repurposing cell growth-regulating compounds identifies kenpaullone which ameliorates pathologic pain via normalization of inhibitory neurotransmission.

Learn More >

Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets.

Learn More >

CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain.

Circular RNAs are non-coding RNAs, and are enriched in the CNS. Dorsal horn neurons of the spinal cord contribute to pain-like hypersensitivity after nerve injury in rodents. Here we show that spinal nerve ligation is associated with an increase in expression of circAnks1a in dorsal horn neurons, in both the cytoplasm and the nucleus. Downregulation of circAnks1a by siRNA attenuates pain-like behaviour induced by nerve injury. In the cytoplasm, we show that circAnks1a promotes the interaction between transcription factor YBX1 and transportin-1, thus facilitating the nucleus translocation of YBX1. In the nucleus, circAnks1a binds directly to the Vegfb promoter, increases YBX1 recruitment to the Vegfb promoter, thereby facilitating transcription. Furthermore, cytoplasmic circAnks1a acts as a miRNA sponge in miR-324-3p-mediated posttranscriptional regulation of VEGFB expression. The upregulation of VEGFB contributes to increased excitability of dorsal horn neurons and pain behaviour induced by nerve injury. We propose that circAnks1a and VEGFB are regulators of neuropathic pain.

Learn More >

Search