I am a
Home I AM A Search Login

Animal Studies

Share this

Pharmacological Inhibition of Porcupine, Disheveled and β-catenin in Wnt Signaling Pathway Ameliorates Diabetic Peripheral Neuropathy in Rats.

Wnt signaling pathway has been investigated extensively for its diverse metabolic and pain modulating mechanisms and recently its involvement has been postulated in the development of neuropathic pain. However, there are no reports as yet on involvement of Wnt signaling pathway in one of the most debilitating neurovascular complication of diabetes, i.e, diabetic peripheral neuropathy (DPN). Thus, in the present study, involvement of Wnt signaling was investigated in DPN using Wnt signaling inhibitors namely LGK974 (Porcupine inhibitor), NSC668036 (Disheveled inhibitor) and PNU74654 (β-catenin inhibitor). Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) to male Sprague Dawley rats. Diabetic rats after six weeks of diabetes induction showed increased expression of Wnt signaling proteins in the spinal cord (L4-L6 lumbar segment), dorsal root ganglions (DRGs) and sciatic nerves. Subsequent increase in inflammation, endoplasmic reticulum (ER) stress and loss of intraepidermal nerve fiber density (IENFD) was also observed, leading to neurobehavioral and nerve functional deficits in diabetic rats. Intrathecal administration of Wnt signaling inhibitors (each at doses of 10 and 30 µM) in diabetic rats showed improvement in pain-associated behaviors (heat, cold & mechanical hyperalgesia) and nerve functions (motor, sensory nerve conduction velocities and nerve blood flow) by decreasing the expression of Wnt pathway proteins, inflammatory marker, matrix metalloproteinase 2 (MMP2), ER stress marker, glucose-regulated protein 78 (GRP78) and improving IENFD. All these results signify the neuroprotective potential of Wnt signaling inhibitors in DPN. Perspective: This study emphasizes the involvement of Wnt signaling pathway in diabetic peripheral neuropathy (DPN). Blockade of this pathway using Wnt inhibitors provided neuroprotection in experimental DPN in rats. This study may provide a basis for exploring the therapeutic potential of Wnt inhibitors in DPN patients.

Learn More >

Development and Characterization of An Injury-free Model of Functional Pain in Rats by Exposure to Red Light.

We report the development and characterization of a novel, injury-free rat model in which nociceptive sensitization following red light is observed in multiple body areas reminiscent of widespread pain in functional pain syndromes. Rats were exposed to red light emitting diodes (RLED) (LEDs, 660 nanometer) at an intensity of 50 Lux for 8 hours daily for 5 days resulting in time- and dose-dependent thermal hyperalgesia and mechanical allodynia in both male and female rats. Females showed earlier onset of mechanical allodynia than males. The pronociceptive effects of RLED were mediated through the visual system. RLED-induced thermal hyperalgesia and mechanical allodynia were reversed with medications commonly used for widespread pain including gabapentin, tricyclic antidepressants, serotonin/norepinephrine reuptake inhibitors, and NSAIDs. Acetaminophen failed to reverse the RLED induced hypersensitivity. The hyperalgesic effects of RLED were blocked when bicuculline, a GABA-A receptor antagonist, was administered into the rostral ventromedial medulla (RVM) suggesting a role for increased descending facilitation in the pain pathway. Key experiments were subjected to a replication study with randomization, investigator-blinding, inclusion of all data and high levels of statistical rigor. RLED induced thermal hyperalgesia and mechanical allodynia without injury offers a novel injury free rodent model useful for the study of functional pain syndromes with widespread pain. RLED exposure also emphasizes the different biological effects of different colors light exposure. Perspective: This study demonstrates the effect of light exposure on nociceptive thresholds. These biological effects of red LED adds evidence to the emerging understanding of biological effects of light of different colors in animals and humans. Understanding the underlying biology of red light-induced wide spread pain may offer insights into functional pain states.

Learn More >

Neuropeptide Y release in the rat spinal cord measured with Y1 receptor internalization is increased after nerve injury.

Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (ECs of 1 nM and 1 μM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.

Learn More >

Streptozotocin-induced diabetic neuropathic pain is associated with potentiated calcium-permeable AMPA receptor activity in the spinal cord.

Neuronal hyperactivity in the spinal dorsal horn can amplify nociceptive input in diabetic neuropathic pain. The glutamate N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (NMDA receptors and AMPA receptors, respectively) are involved in spinal nociceptive transmission. However, it is unclear whether painful diabetic neuropathy is associated with changes in the activity of synaptic NMDA receptors and AMPA receptors in spinal dorsal horn neurons. AMPA receptors lacking GluA2 are Ca2+ permeable (CP-AMPA receptors), and their currents display characteristic inward rectification. In this study, we showed that evoked excitatory postsynaptic currents (EPSCs) exhibited inward rectification in spinal dorsal neurons in diabetic rats induced by streptozotocin. Interestingly, presynaptic and postsynaptic NMDA receptor activity in the spinal dorsal horn was similar in diabetic and control rats. In the dorsal spinal cord, the membrane GluA2 protein level was significantly less in diabetic than in control rats, whereas the cytosolic GluA2 level was greater in diabetic than in control rats. In contrast, the GluA1 subunit levels in the plasma membrane and cytosol did not differ between the two groups. Blocking CP-AMPA receptors significantly reduced the amplitude of EPSCs of dorsal horn neurons in diabetic but not in control rats. Furthermore, blocking spinal CP-AMPA receptors reduced pain hypersensitivity in diabetic rats but had no effect on nociception in control rats. Our study suggests that diabetic neuropathy augments CP-AMPA receptor activity in the spinal dorsal horn by causing intracellular retention of GluA2 and impairing GluA2 membrane trafficking. Increased prevalence of spinal CP-AMPA receptors sustains diabetic neuropathic pain. SIGNIFICANCE STATEMENT: This study demonstrates that the prevalence of synaptic calcium permeable-AMPA receptors is increased in the spinal dorsal horn, which mediates pain hypersensitivity in diabetic neuropathy. Thus, calcium permeable-AMPA receptors play an important role in glutamatergic synaptic plasticity in the spinal cord in painful diabetic neuropathy. This new knowledge improves our understanding of the mechanisms involved in central sensitization associated with diabetic neuropathic pain and suggest that calcium permeable-AMPA receptors are an alternative therapeutic target for treating this chronic pain condition.

Learn More >

Perispinal injection of a TNF blocker directed to the brain of rats alleviates the sensory and affective components of chronic constriction injury-induced neuropathic pain.

Neuropathic pain is chronic pain that follows nerve injury, mediated in the brain by elevated levels of the inflammatory protein tumor necrosis factor-alpha (TNF). We have shown that peripheral nerve injury increases TNF in the hippocampus/pain perception region, which regulates neuropathic pain symptoms. In this study we assessed pain sensation and perception subsequent to specific targeting of brain-TNF (via TNF antibody) administered through a novel subcutaneous perispinal route. Neuropathic pain was induced in Sprague-Dawley rats via chronic constriction injury (CCI), and thermal hyperalgesia was monitored for 10 days post-surgery. On day 8 following CCI and sensory pain behavior testing, rats were randomized to receive perispinal injection of TNF antibody or control IgG isotype antibody. Pain perception was assessed using conditioned place preference (CPP) to the analgesic, amitriptyline. CCI-rats receiving the perispinal injection of TNF antibody had significantly decreased CCI-induced thermal hyperalgesia the following day, and did not form an amitriptyline-induced CPP, whereas CCI-rats receiving perispinal IgG antibody experienced pain alleviation only in conjunction with i.p. amitriptyline and did form an amitriptyline-induced CPP. The specific targeting of brain TNF via perispinal delivery alleviates thermal hyperalgesia and positively influences the affective component of pain. Perspective This study presents a novel route of drug administration to target central TNF for treatment of neuropathic pain. Targeting central TNF through perispinal drug delivery could potentially be a more efficient and sustained method to treat patients with neuropathic pain.

Learn More >

miR-200a-3p modulates gene expression in comorbid pain and depression: Molecular implication for central sensitization.

Chronic pain and depression are often comorbid exhibiting common clinical presentations and biological connections related to central nervous system sensitization. Epigenetic regulation of gene expression in the brain plays a crucial role in response to long-lasting stress and chronic pain, and microRNA imbalance in the prefrontal cortex (PFC) might be involved in central sensitization. Male Sprague Dawley rats were subjected to unpredictable chronic mild stress (UCMS) and spared nerve injury (SNI) to initiate depressive-like behavior and chronic pain behavior, respectively. The next-generation sequencing technique was employed to analyze PFC microRNAs in both the UCMS and SNI models. Rats exposed to either UCMS or SNI exhibited both depressive-like and chronic pain behaviors. Five specific microRNAs (miR-10a-5p, miR-182, miR-200a-3p, miR-200b-3p, and miR-429) were simultaneously down-regulated in the depressive-like and chronic pain models after 4 weeks of short-term stress. Gene ontology revealed that the 4-week period of stress enhanced neurogenesis. Only the miR-200a-3p level was continuously elevated under prolonged stress, suggesting roles of reduced neurogenesis, inflammatory activation, disturbed circadian rhythm, lipid metabolism, and insulin secretion in the co-existence of pain and depression. Thus we conclude that miR-200a-3p might be a specific biomarker of central sensitization in chronic pain and depression.

Learn More >

Amygdala group II mGluRs mediate the inhibitory effects of systemic group II mGluR activation on behavior and spinal neurons in a rat model of arthritis pain.

The amygdala plays a critical role in emotional-affective aspects of behaviors and pain modulation. The central nucleus of amygdala (CeA) serves major output functions, and neuroplasticity in the CeA is linked to pain-related behaviors in different models. Activation of G-coupled group II metabotropic glutamate receptors (mGluRs), which consist of mGluR2 and mGluR3, can decrease neurotransmitter release and regulate synaptic plasticity. Group II mGluRs have emerged as targets for neuropsychiatric disorders and can inhibit pain-related processing and behaviors. Surprisingly, site and mechanism of antinociceptive actions of systemically applied group II mGluR agonists are not clear. Our previous work showed that group II mGluR activation in the amygdala inhibits pain-related CeA activity, but behavioral and spinal consequences remain to be determined. Here we studied the contribution of group II mGluRs in the amygdala to the antinociceptive effects of a systemically applied group II mGluR agonist (LY379268) on behavior and spinal dorsal horn neuronal activity, using the kaolin/carrageenan-induced knee joint arthritis pain model. Audible and ultrasonic vocalizations (emotional responses) and mechanical reflex thresholds were measured in adult rats with and without arthritis (5-6 h postinduction). Extracellular single-unit recordings were made from spinal dorsal horn wide dynamic range neurons of anesthetized (isoflurane) rats with and without arthritis (5-6 h postinduction). Systemic (intraperitoneal) application of a group II mGluR agonist (LY379268) decreased behaviors and activity of spinal neurons in the arthritis pain model but not under normal conditions. Stereotaxic administration of LY379268 into the CeA mimicked the effects of systemic application. Conversely, stereotaxic administration of a group II mGluR antagonist (LY341495) into the CeA reversed the effects of systemic application of LY379268 on behaviors and dorsal horn neuronal activity in arthritic rats. The data show for the first time that the amygdala is the critical site of action for the antinociceptive behavioral and spinal neuronal effects of systemically applied group II mGluR agonists.

Learn More >

Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors.

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT.

Learn More >

Assessing the affective component of pain, and the efficacy of pain control, using conditioned place aversion in calves.

Pain in animals is typically assessed using reflexive and physiological responses. These measures allow inferences regarding nociception but provide little basis for conclusions about the affective component of pain (i.e. how negatively the experience is perceived). Calves routinely undergo painful procedures on commercial farms, including hot-iron disbudding, providing a convenient model to study pain in animals. The aim of this study was to investigate the affective component of post-procedural pain due to hot-iron disbudding, using conditioned place aversion. Calves ( = 31) were subjected to two procedures (one bud at a time): one without post-procedural pain control and the other with the use of a nonsteroidal anti-inflammatory drug (either meloxicam ( = 16) or ketoprofen ( = 15)). All procedures included the use of local anaesthesia (lidocaine). Place conditioning was tested 2 days after the last treatment by allowing calves to freely roam between the pens where they had previously been disbudded. Calves spent more time, and lay down more frequently, in the pen where they received meloxicam compared with the pen where they only received a local block. Surprisingly, calves avoided the pen where they received ketoprofen compared with the control treatment pen. We hypothesize that the shorter duration of action of ketoprofen resulted in increasing pain at the end of the conditioning period, explaining the increased aversion to this treatment. These results illustrate the value of place conditioning paradigms to assess the affective component of pain in animals, and suggest that the animal's evaluation of painful events depends upon the time course of when the pain is experienced.

Learn More >

Role of macrophages and activated microglia in neuropathic pain associated with chronic progressive spinal cord compression.

Neuropathic pain (NeP) is commonly encountered in patients with diseases associated with spinal cord damage (e.g., spinal cord injury (SCI) and compressive myelopathy). Recent studies described persistent glial activation and neuronal hyperactivity in SCI, but the pathomechanisms of NeP in chronic compression of the spinal cord remains elusive. The purpose of the present study was to determine the roles of microglia and infiltrating macrophages in NeP. The study was conducted in chimeric spinal hyperostotic mice (ttw/ttw), characterized by chronic progressive compression of the spinal cord as a suitable model of human compressive myelopathy. The severity of spinal cord compression correlated with proportion of activated microglia and hematogenous macrophages. Spinal cord compression was associated with overexpression of mitogen-activated protein kinases (MAPKs) in infiltrating macrophages and reversible blood-spinal cord barrier (BSCB) disruption in the dorsal horns. Our results suggested that chronic neuropathic pain in long-term spinal cord compression correlates with infiltrating macrophages, activated microglial cells and the associated damage of BSCB, together with overexpression of p-38 MAPK and p-ERK1/2 in these cells. Our findings are potentially useful for the design of new therapies to alleviate chronic neuropathic pain associated with compressive myelopathy.

Learn More >

Search