I am a
Home I AM A Search Login

Animal Studies

Share this

Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury.

Learn More >

Late sodium current blocker GS967 inhibits persistent currents induced by familial hemiplegic migraine type 3 mutations of the SCN1A gene.

Familial hemiplegic migraine (FHM) is a group of genetic migraine, associated with hemiparesis and aura. Three causative different genes have been identified, all of which are involved in membrane ion transport. Among these, SCN1A encodes the voltage-gated Na channel Nav1.1, and FHM caused by mutations of SCN1A is named FHM3. For 7 of the 12 known FHM3-causing SCNA1 mutations functional consequences have been investigated, and even if gain of function effect seems to be a predominant phenotype, for several mutations conflicting results have been obtained and the available data do not reveal a univocal FHM3 pathomechanism.

Learn More >

Profiling the microRNA signature of the peripheral sensory ganglia in experimental autoimmune encephalomyelitis (EAE).

Multiple sclerosis is an autoimmune disease with a distinct female bias, as well as a high prevalence of neuropathic pain in both sexes. The dorsal root ganglia (DRG) contain the primary sensory neurons that give rise to pain, and damage to these neurons may lead to neuropathic pain. Here, we investigate the sex differences of the DRG transcriptome in a mouse model of MS.

Learn More >

Spinophilin negatively controlled the function of transient receptor potential vanilloid 1 in dorsal root ganglia neurons of mice.

Protein phosphatase-1 (PP1) is ubiquitously distributed in the nervous system and catalyzes the dephosphorylation of numerous substrates. The specificity and efficacy of PP1-mediated dephosphorylation depend on scaffolding proteins that anchor PP1 to the close vicinity of substrates. Spinophilin is one of the scaffolding proteins which are able to direct PP1 into postsynaptic density and regulate the synaptic transmission and plasticity. Here we found that spinophilin was enriched in dorsal root ganglia (DRG) neurons and engaged in the modification of nociceptive signaling processing. Disturbing spinophilin/PP1 interaction in DRG neurons led to the enhanced sensitivity of mice to heat and mechanical stimuli. The transient receptor potential vanilloid 1 (TRPV1) was identified as an important target for spinophilin modification. Our data showed that spinophilin physically interacted with TRPV1 and facilitated PP1 dephosphorylation of TRPV1 at Ser502. Disruption of spinophilin/PP1 complex enhanced Ser502 phosphorylation and boosted TRPV1 expression on plasma membrane. Peripheral inflammation induced by formalin disturbed spinophilin/PP1 interaction, which removed PP1-mediated inhibition and caused a marked increase of TRPV1 phosphorylation. Viral expression of wild-type spinophilin in DRG neurons repressed TRPV1 phosphorylation and alleviated formalin-induced inflammatory pain. These data suggested that spinophilin/PP1 complex negatively controlled TRPV1 function in DRG neurons.

Learn More >

Junctophilin-4 is essential for signalling at plasma membrane-endoplasmic reticulum junctions in sensory neurons.

Learn More >

Activation of the intrinsic pain inhibitory circuit from the midcingulate Cg2 to zona incerta alleviates neuropathic pain.

Neuropathic pain is one of the most common and notorious neurological diseases. The changes in cerebral structures after nerve injury and the corresponding contributions to neuropathic pain are not well understood. Here we found that the majority of glutamatergic neurons in the area 2 of midcingulate cortex (MCC Cg2) were inhibited by painful stimulation in male mice. Optogenetic manipulation revealed that these neurons were tonically involved in the inhibitory modulation of multimodal nociception. We further identified the projections to GABAergic neurons in the zona incerta (ZI) mediated the pain inhibitory role. However, MCC Cg2 became hypoactive after nerve injury. Although a brief activation of the MCC Cg2 to ZI circuit was able to relieve the aversiveness associated with spontaneous ongoing pain, consecutive activation of the circuit was required to alleviate neuropathic allodynia. In contrast, glutamatergic neurons in the area 1 of midcingulate cortex played opposite roles in pain modulation. They became hyperactive after nerve injury and only consecutive inhibition of their activity relieved allodynia. These results demonstrate that MCC Cg2 constitute a component of intrinsic pain inhibitory circuitry and their hypoactivity underlies neuropathic pain. We propose that selective and persistent activation of the MCC Cg2 to ZI circuit may serve as a potential therapeutic strategy for this disease.Glutamatergic neurons in the area 2 of midcingulate cortex (MCC Cg2) are tonically involved in the intrinsic pain inhibition via projecting to GABAergic neurons in the zona incerta. They are hypoactive after nerve injury. Selective activation of the circuit compensates the reduction of its analgesic strength and relieves neuropathic pain. Therefore, MCC Cg2 and the related analgesic circuit may serve as a therapeutic target for neuropathic pain. In contrast, MCC Cg1 have an opposite role in pain modulation and become hyperactive after nerve injury. The present study provides novel evidence for the concept that neuropathic pain is associated with the dysfunction of endogenous pain modulatory system and new perspective on the treatment of neuropathic pain.

Learn More >

P2Y12 receptor mediates microglial activation via RhoA/ROCK pathway in the trigeminal nucleus caudalis in a mouse model of chronic migraine.

Microglial activation contributes to the development of chronic migraine (CM). The P2Y12 receptor (P2Y12R), a metabolic purinoceptor that is expressed on microglia in the central nervous system (CNS), has been indicated to play a critical role in the pathogenesis of chronic pain. However, whether it contributes to the mechanism of CM remains unknown. Thus, the present study investigated the precise details of microglial P2Y12R involvement in CM.

Learn More >

Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn.

Nociceptive information is relayed through the spinal cord dorsal horn, a critical area in sensory processing. The neuronal circuits in this region that underpin sensory perception must be clarified to better understand how dysfunction can lead to pathological pain. This study used an optogenetic approach to selectively activate spinal interneurons that express the calcium-binding protein calretinin (CR). We show that these interneurons form an interconnected network that can initiate and sustain enhanced excitatory signaling, and directly relay signals to lamina I projection neurons. Photoactivation of CR interneurons in vivo resulted in a significant nocifensive behavior that was morphine sensitive, caused a conditioned place aversion, and was enhanced by spared nerve injury. Furthermore, halorhodopsin-mediated inhibition of these interneurons elevated sensory thresholds. Our results suggest that dorsal horn circuits that involve excitatory CR neurons are important for the generation and amplification of pain and identify these interneurons as a future analgesic target.

Learn More >

Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition.

Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.

Learn More >

C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system.

Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1).

Learn More >

Search