I am a
Home I AM A Search Login

Animal Studies

Share this

Characterization of Mechanical Allodynia and Skin Innervation in a Mouse Model of Type-2 Diabetes Induced by Cafeteria-Style Diet and Low-Doses of Streptozotocin.

Painful distal symmetrical polyneuropathy (DPN) is a frequent complication of type-2 diabetes mellitus (T2DM) that commonly presents as neuropathic pain and loss of skin nerve fibers. However, there are limited therapies to effectively treat DPN and many of the current animal models of T2DM-induced DPN do not appear to mirror the human disease. Thus, we validated a DPN mouse model induced by a cafeteria-style diet plus low-doses of streptozotocin (STZ). Female C57BL/6J mice were fed either standard (STD) diet or obesogenic cafeteria (CAF) diet for 32 weeks, starting at 8 weeks old. Eight weeks after starting diets, CAF or STD mice received either four low-doses of STZ or vehicle. Changes in body weight, blood glucose and insulin levels, as well as oral glucose- and insulin-tolerance tests (OGTT and ITT) were determined. The development of mechanical hypersensitivity of the hindpaws was determined using von Frey filaments. Moreover, the effect of the most common neuropathic pain drugs was evaluated on T2DM-induced mechanical allodynia. Finally, the density of PGP -9.5 (a pan-neuronal marker) axons in the from the hindpaw glabrous skin was quantified. At 22-24 weeks after STZ injections, CAF + STZ mice had significantly higher glucose and insulin levels compared to CAF + VEH, STD + STZ, and STD + VEH mice, and developed glucose tolerance and insulin resistance. Skin mechanical sensitivity was detected as early as 12 weeks post-STZ injections and it was significantly attenuated by intraperitoneal acute treatment with amitriptyline, gabapentin, tramadol, duloxetine, or carbamazepine but not by diclofenac. The density of PGP-9.5 nerve fibers was reduced in CAF + STZ mice compared to other groups. This reverse translational study provides a painful DPN mouse model which may help in developing a better understanding of the factors that generate and maintain neuropathic pain and denervation of skin under T2DM and to identify mechanism-based new treatments.

Learn More >

Spinal N-Cadherin/CREB Signaling Contributes to Chronic Alcohol Consumption-Enhanced Postsurgical Pain.

It has been reported that N-cadherin and cAMP response element binding protein (CREB) in the spinal cord are critical for synaptogenesis and regulation of excitatory synapse function, which could underlie chronic pain development. The aim of the present study was to investigate the role of spinal N-cadherin/CREB signaling in postsurgical pain chronicity following chronic alcohol consumption.

Learn More >

Electroacupuncture Regulates Pain Transition by Inhibiting the mGluR5-PKCε Signaling Pathway in the Dorsal Root Ganglia.

Acute pain can transition to chronic pain, presenting a major clinical challenge. Electroacupuncture (EA) can partly prevent the transition from acute to chronic pain. However, little is known about the mechanisms underlying the effect of EA. This study investigated the effect of EA on pain transition and the activation of metabotropic glutamate receptor 5 (mGluR5)-protein kinase C epsilon (PKCε) signaling pathway in the dorsal root ganglia (DRG).

Learn More >

Experimental Autoimmune Prostatitis Induces Learning-Memory Impairment and Structural Neuroplastic Changes in Mice.

Patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) commonly experience learning and memory decline and the underlying pathogenesis remains unclear. Therefore, we aimed to study the effects of CP/CPPS on cognitive function by using a mouse model of experimental autoimmune prostatitis (EAP). Non-obese diabetic mice were immunized subcutaneously by prostate antigen and adjuvant twice and tested for cognitive performance by Morris water maze and novel object recognition test after the EAP induction. Then, dendritic complexity and spine densities were measured by using the Golgi-Cox procedure. Transmission electron microscopy was used to observe the synaptic morphology. In addition, activation of microglia and its association with synapses were also investigated by immunofluorescence staining. Our results showed that EAP induced a notable decrease in the learning and memory ability of mice, simultaneously causing a reduction in dendritic complexity detected by Sholl analysis. Likewise, the spine densities and synaptic proteins including synaptophysin and postsynaptic density protein 95 (PSD95) were significantly decreased in the EAP group. These observations were also accompanied by structural changes in synaptic plasticity. Additionally, EAP mice showed microglial activation in the hippocampus, and these activated microglia further increased contact with synaptic terminals. Taken together, our data are the first to indicate that EAP induces cognitive declines and structural neuroplastic changes in mice, accompanied by microglial activation and microglia-synapse contacts.

Learn More >

Burst & High-Frequency Spinal Cord Stimulation Differentially Effect Spinal Neuronal Activity After Radiculopathy.

Although burst and high-frequency (HF) spinal cord stimulation (SCS) relieve neuropathic pain, their effects on neuronal hyperexcitability have not been compared. Specifically, it is unknown how the recharge components of burst SCS-either actively balanced or allowed to passively return-and/or different frequencies of HF SCS compare in altering neuronal activity. Neuronal firing rates were measured in the spinal dorsal horn on day 7 after painful cervical nerve root compression in the rat. Motor thresholds (MTs) and evoked neuronal recordings were collected during noxious stimuli before (baseline) and after delivery of SCS using different SCS modes: 10 kHz HF, 1.2 kHz HF, burst with active recharge, or burst with passive recharge. Spontaneous firing rates were also evaluated at baseline and after SCS. The average MT for 10 kHz SCS was significantly higher (p < 0.033) than any other mode. Burst with passive recharge was the only SCS mode to significantly reduce evoked (p = 0.019) and spontaneous (p = 0.0076) firing rates after noxious pinch. This study demonstrates that HF and burst SCS have different MTs and effects on both evoked and spontaneous firing rates, indicating they have different mechanisms of providing pain relief. Since burst with passive recharge was the only waveform to reduce firing, that waveform may be important in the neurophysiological response to stimulation.

Learn More >

Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain.

Chemotherapy-induced neuropathic pain is a dose-limiting side effect of many cancer therapies due to their propensity to accumulate in peripheral nerves, which is facilitated by the permeability of the blood-nerve barrier. Preclinically, the chemotherapy agent vincristine (VCR) activates endothelial cells in the murine peripheral nervous system and in doing so allows the infiltration of monocytes into nerve tissue where they orchestrate the development of VCR-induced nociceptive hypersensitivity. In this study we demonstrate that VCR also activates endothelial cells in the murine central nervous system, increases paracellular permeability and decreases trans endothelial resistance. In in vivo imaging studies in mice, VCR administration results in trafficking of inflammatory monocytes through the endothelium. Indeed, VCR treatment affects the integrity of the blood-spinal cord-barrier as indicated by Evans Blue extravasation, disrupts tight junction coupling and is accompanied by the presence of monocytes in the spinal cord. Such inflammatory monocytes (Iba-1 CCR2 Ly6C TMEM119 cells) that infiltrate the spinal cord also express the pro-nociceptive cysteine protease Cathepsin S. Systemic treatment with a CNS-penetrant, but not a peripherally-restricted, inhibitor of Cathepsin S prevents the development of VCR-induced hypersensitivity, suggesting that infiltrating monocytes play a functional role in sensitising spinal cord nociceptive neurons. Our findings guide us towards a better understanding of central mechanisms of pain associated with VCR treatment and thus pave the way for the development of innovative antinociceptive strategies.

Learn More >

Spatiotemporal Alterations in Gait in Humanized Transgenic Sickle Mice.

Sickle cell disease (SCD) is a hemoglobinopathy affecting multiple organs and featuring acute and chronic pain. Purkinje cell damage and hyperalgesia have been demonstrated in transgenic sickle mice. Purkinje cells are associated with movement and neural function which may influence pain. We hypothesized that Purkinje cell damage and/or chronic pain burden provoke compensatory gait changes in sickle mice. We found that Purkinje cells undergoe increased apoptosis as shown by caspase-3 activation. Using an automated gait measurement system, MouseWalker, we characterized spatiotemporal gait characteristics of humanized transgenic BERK sickle mice in comparison to control mice. Sickle mice showed alteration in stance instability and dynamic gait parameters (walking speed, stance duration, swing duration and specific swing indices). Differences in stance instability may reflect motor dysfunction due to damaged Purkinje cells. Alterations in diagonal and all stance indices indicative of hesitation during walking may originate from motor dysfunction and/or arise from fear and/or anticipation of movement-evoked pain. We also demonstrate that stance duration, diagonal swing indices and all stance indices correlate with both mechanical and deep tissue hyperalgesia, while stance instability correlates with only deep tissue hyperalgesia. Therefore, objective analysis of gait in SCD may provide insights into neurological impairment and pain states.

Learn More >

Upregulation of μ-Opioid Receptor in the Rat Spinal Cord Contributes to the α2-Adrenoceptor Agonist Dexmedetomidine-Induced Attenuation of Chronic Morphine Tolerance in Cancer Pain.

Sustained morphine treatment for cancer pain has been limited due to analgesic tolerance. Opioid receptor internalization and desensitization mediated by downregulation of mu-opioid receptor (MOR) expression have been confirmed as one of the mechanisms of chronic morphine tolerance. In addition to the opiate system, the α2-adrenergic system is involved in the development of morphine tolerance. Several studies reported that co-administration of α2-adrenoceptor agonist dexmedetomidine inhibits morphine tolerance in normal or neuropathic pain animals. However, the effect of dexmedetomidine on morphine tolerance has not been studied in cancer pain. Therefore, we investigated the effect of intrathecal injection of dexmedetomidine on the development of morphine tolerance in cancer pain and on the expression of MOR in the spinal cord of morphine-tolerant cancer pain rats.

Learn More >

TRPV1, TRPA1, and TRPM8 are expressed in axon terminals in the cornea: TRPV1 axons contain CGRP and secretogranin II; TRPA1 axons contain secretogranin 3.

The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea.

Learn More >

Spinal Inhibition of GABAB Receptors by the Extracellular Matrix Protein Fibulin-2 in Neuropathic Rats.

In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain. We demonstrate that fibulin-2 hampers GABAB activation, presumably through decreasing agonist-induced conformational changes. Fibulin-2 regulates the GABAB-mediated presynaptic inhibition of neurotransmitter release and weakens the GABAB-mediated inhibitory effect in neuronal cell culture. In the dorsal spinal cord of neuropathic rats, fibulin-2 is overexpressed and colocalized with B1a. Fibulin-2 may thus interact with presynaptic GABAB receptors, including those on nociceptive afferents. By applying anti-fibulin-2 siRNA , we enhanced the antinociceptive effect of intrathecal baclofen in neuropathic rats, thus demonstrating that fibulin-2 limits the action of GABAB agonists . Taken together, our data provide an example of an endogenous regulation of GABAB receptor by extracellular matrix proteins and demonstrate its functional impact on pathophysiological processes of pain sensitization.

Learn More >

Search