I am a
Home I AM A Search Login

Animal Studies

Share this

A safe bet? Inter-laboratory variability in behaviour-based severity assessment.

Evidence-based severity assessment is essential as a basis for ethical evaluation in animal experimentation to ensure animal welfare, legal compliance and scientific quality. To fulfil these tasks scientists, animal care and veterinary personnel need assessment tools that provide species-relevant measurements of the animals' physical and affective state. In a three-centre study inter-laboratory robustness of body weight monitoring, mouse grimace scale (MGS) and burrowing test were evaluated. The parameters were assessed in naïve and tramadol treated female C57BL/6J mice. During tramadol treatment a body weight loss followed by an increase, when treatment was terminated, was observed in all laboratories. Tramadol treatment did not affect the MGS or burrowing performance. Results were qualitatively comparable between the laboratories, but quantitatively significantly different (inter-laboratory analysis). Burrowing behaviour seems to be highly sensitive to inter-laboratory differences in testing protocol. All locations obtained comparable information regarding the qualitative effect of tramadol treatment in C57BL/6J mice, however, datasets differed as a result of differences in test and housing conditions. In conclusion, our study confirms that results of behavioural testing can be affected by many factors and may differ between laboratories. Nevertheless, the evaluated parameters appeared relatively robust even when conditions were not harmonized extensively and present useful tools for severity assessment. However, analgesia-related side effects on parameters have to be considered carefully.

Learn More >

Endogenous control of inflammatory visceral pain by T cell-derived opioids in IL-10-deficient mice.

The opioid-mediated analgesic activity of mucosal CD4 T lymphocytes in colitis has been reported in immunocompetent mice so far. Here, we investigated whether CD4 T lymphocytes alleviate from inflammation-induced abdominal pain in mice with defective immune regulation.

Learn More >

A study of cortical and brainstem mechanisms of diffuse noxious inhibitory controls in anaesthetised normal and neuropathic rats.

Diffuse noxious inhibitory controls (DNIC) are a mechanism of endogenous descending pain modulation, and are deficient in a large proportion of chronic pain patients. However, the pathways involved remain only partially determined with several cortical and brainstem structures implicated. This study examined the role of the dorsal reticular nucleus (DRt) and infralimbic (ILC) region of the medial prefrontal cortex in DNIC. In vivo electrophysiology was performed to record from dorsal horn lamina V/VI wide dynamic range neurones with left hind paw receptive fields in anaesthetised sham-operated and L5/L6 spinal nerve ligated (SNL) rats. Evoked neuronal responses were quantified in the presence and absence of a conditioning stimulus (left ear clamp). In sham rats, DNIC were reproducibly recruited by a heterotopically applied conditioning stimulus, an effect that was absent in neuropathic rats. Intra-DRt naloxone had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. In addition, intra-DRt naloxone blocked DNIC in sham rats, but had no effect in SNL rats. Intra-ILC lidocaine had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. However, differential effects were observed in relation to the expression of DNIC; intra-ILC lidocaine blocked activation of DNIC in sham rats but restored DNIC in SNL rats. These data suggest that the ILC is not directly involved in mediating DNIC but can modulate its activation, and that DRt involvement in DNIC requires opioidergic signalling.

Learn More >

The inhibitory effect of Phα1β toxin on diabetic neuropathic pain involves the CXCR4 chemokine receptor.

Diabetic neuropathy is a common cause of painful diabetic neuropathy (PDN). C-X-C chemokine receptor type 4 (CXCR4) expression is increased in peripheral nerve samples from diabetes patients, suggesting a role for CXCR4 in PDN. Therefore, we evaluated the effects of Phα1β, ω-conotoxin MVIIA, and AMD3100 in a model of streptozotocin (STZ)-induced PDN in rodents and naïve model of rats with the activation of the CXCR4/stromal cell-derived factor 1 (SDF-1) signal.

Learn More >

Synaptotagmin 1 Is Involved in Neuropathic Pain and Electroacupuncture-Mediated Analgesic Effect.

Numerous studies have verified that electroacupuncture (EA) can relieve neuropathic pain through a variety of mechanisms. Synaptotagmin 1 (Syt-1), a synaptic vesicle protein for regulating exocytosis of neurotransmitters, was found to be affected by EA stimulation. However, the roles of Syt-1 in neuropathic pain and EA-induced analgesic effect remain unclear. Here, the effect of Syt-1 on nociception was assessed through an antibody blockade, siRNA silencing, and lentivirus-mediated overexpression of spinal Syt-1 in rats with spared nerve injury (SNI). EA was used for stimulating bilateral "Sanjinjiao" and "Zusanli" acupoints of the SNI rats to evaluate its effect on nociceptive thresholds and spinal Syt-1 expression. The mechanically and thermally nociceptive behaviors were assessed with paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) at different temperatures, respectively, at day 0, 7, 8, 14, and 20. Syt-1 mRNA and protein levels were determined with qRT-PCR and Western blot, respectively, and its distribution was observed with the immunohistochemistry method. The results demonstrated Syt-1 antibody blockade and siRNA silencing increased ipsilateral PWTs and PWLs of SNI rats, while Syt-1 overexpression decreased ipsilateral PWTs and PWLs of rats. EA significantly attenuated nociceptive behaviors and down-regulated spinal Syt-1 protein levels (especially in laminae I-II), which were reversed by Syt-1 overexpression. Our findings firstly indicate that Syt-1 is involved in the development of neuropathic pain and that EA attenuates neuropathic pain, probably through suppressing Syt-1 protein expression in the spinal cord.

Learn More >

Genome-wide analysis of differential gene expression and splicing in excitatory neurons and interneuron subtypes.

Cortical circuit activity is shaped by the parvalbumin (PV) and somatostatin (SST) interneurons that inhibit principal excitatory (EXC) neurons and the vasoactive intestinal peptide (VIP) interneurons that suppress activation of other interneurons. To understand the molecular-genetic basis of functional specialization and identify potential drug targets specific to each neuron subtype, we performed a genome wide assessment of both gene expression and splicing across EXC, PV, SST and VIP neurons from male and female mouse brains. These results reveal numerous examples where neuron subtype-specific gene expression, as well as splice-isoform usage, can explain functional differences between neuron subtypes, including in presynaptic plasticity, postsynaptic receptor function, and synaptic connectivity specification. We provide a searchable web resource for exploring differential mRNA expression and splice form usage between excitatory, PV, SST, and VIP neurons (http://research-pub.gene.com/NeuronSubtypeTranscriptomes). This resource, combining a unique new data set and novel application of analysis methods to multiple relevant data sets, identifies numerous potential drug targets for manipulating circuit function, reveals neuron subtype-specific roles for disease-linked genes, and is useful for understanding gene expression changes observed in human patient brains.Understanding the basis of functional specialization of neuron subtypes and identifying drug targets for manipulating circuit function requires comprehensive information on cell-type specific transcriptional profiles. We sorted excitatory neurons and key inhibitory neuron subtypes from mouse brains and assessed differential mRNA expression. We used a genome-wide analysis which not only examined differential gene expression levels but could also detect differences in splice isoform usage. This analysis reveals numerous examples of neuron subtype-specific isoform usage with functional importance, identifies potential drug targets, and provides insight into the neuron subtypes involved in psychiatric disease. We also apply our analysis to two other relevant data sets for comparison, and provide a searchable website for convenient access to the resource.

Learn More >

Characterization of Ubrogepant: A Potent and Selective Antagonist of the Human Calcitonin Gene‒Related Peptide Receptor.

A growing body of evidence has implicated the calcitonin gene-related peptide (CGRP) receptors in migraine pathophysiology. With the recent approval of monoclonal antibodies targeting CGRP or the CGRP receptor, the inhibition of CGRP-mediated signaling has emerged as a promising approach for preventive treatments of migraine in adults. However, there are no small-molecule anti-CGRP treatments available for treating migraine. The current studies aimed to characterize the pharmacologic properties of ubrogepant, an orally bioavailable, CGRP receptor antagonist for the acute treatment of migraine. In a series of ligand binding assays, ubrogepant exhibited a high binding affinity for native (=0.067 nM) and cloned human (=0.070 nM) and rhesus CGRP receptors (=0.079 nM), with relatively lower affinities for CGRP receptors from rat, mouse, rabbit and dog. In functional assays, ubrogepant potently blocked human α-CGRP stimulated cAMP response (IC of 0.08 nM) and exhibited highly selective antagonist activity for the CGRP receptor compared with other members of the human calcitonin receptor family. Furthermore, the in vivo CGRP receptor antagonist activity of ubrogepant was evaluated in a pharmacodynamic model of capsaicin-induced dermal vasodilation (CIDV) in rhesus monkeys and humans. Results demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV with a mean EC of 3.2 and 2.6 nM in rhesus monkeys and humans, respectively. Brain penetration studies with ubrogepant in monkeys showed a CSF/plasma ratio of 0.03 and low CGRP receptor occupancy. In summary, ubrogepant is a competitive antagonist with high affinity, potency, and selectivity for the human CGRP receptor. SIGNIFICANCE STATEMENT: Ubrogepant is a potent, selective, orally delivered, small-molecule competitive antagonist of the human calcitonin generelated peptide receptor. In vivo studies using a pharmacodynamic model of capsaicin-induced dermal vasodilation (CIDV) in rhesus monkeys and humans demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV, indicating a predictable pharmacokinetic-pharmacodynamic relationship.

Learn More >

Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model.

Kinins are mediators of pain and inflammation and evidence suggests that the inducible kinin B1 receptor (B1R) is involved in neuropathic pain (NP). This study investigates whether B1R and TRPV1 are colocalized on nociceptors and/or astrocytes to enable regulatory interaction either directly or through the cytokine pathway (IL-1β, TNF-α) in NP. Sprague Dawley rats were subjected to unilateral partial sciatic nerve ligation (PSNL) and treated from 14 to 21 days post-PSNL with antagonists of B1R (SSR240612, 10 mg·kg, i.p.) or TRPV1 (SB366791, 1 mg·kg, i.p.). The impact of these treatments was assessed on nociceptive behavior and mRNA expression of B1R, TRPV1, TNF-α, and IL-1β. Localization on primary sensory fibers, astrocytes, and microglia was determined by immunofluorescence in the lumbar spinal cord and dorsal root ganglion (DRG). Both antagonists suppressed PSNL-induced thermal hyperalgesia, but only SB366791 blunted mechanical and cold allodynia. SSR240612 reversed PSNL-induced enhanced protein and mRNA expression of B1R and TRPV1 mRNA levels in spinal cord while SB366791 further increased B1R mRNA/protein expression. B1R and TRPV1 were found in non-peptide sensory fibers and astrocytes, and colocalized in the spinal dorsal horn and DRG, notably with IL-1β on astrocytes. IL-1β mRNA further increased under B1R or TRPV1 antagonism. Data suggest that B1R and TRPV1 contribute to thermal hyperalgesia and play a distinctive role in allodynia associated with NP. Close interaction and reciprocal regulatory mechanism are suggested between B1R and TRPV1 on astrocytes and nociceptors in NP.

Learn More >

Involvement of 5-HT2A, 5-HT2B and 5-HT2C receptors in mediating the ventrolateral orbital cortex-induced antiallodynia in a rat model of neuropathic pain.

The present study examined the roles of 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes in mediating the ventrolateral orbital cortex (VLO)-induced antiallodynia in a rat model of neuropathic pain induced by spared nerve injury (SNI). Change of mechanical paw withdrawal threshold (PWT) was measured using von-Frey filaments. Microinjection of preferential or selective 5-HT2A/C, 5-HT2B and 5-HT2C receptor agonists, (±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), α-methyl-5-(2-thienylmethoxy)-1H-Indole-3-ethanamine hydrochloride (BW723C86) and 1-(3-Chlorophenyl)-piperazine hydrochloride (m-CPP) into the VLO significantly depressed allodynia induced by SNI, and the inhibitory effect of DOI was blocked or attenuated by selective 5-HT2A/C receptor antagonists ketanserin (+)-tartrate salt (ketanserin) and 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol (M100907); the effects of BW723C86 and m-CPP were antagonized by 5-HT2B receptor antagonists N-(1-Methyl-1H-5-indolyl)-N'-(3-methyl-5-isothiazolyl)urea (SB204741) and 5-HT2C receptor antagonist RS102221 hydrochloride hydrate (RS-102221), respectively. These results suggest that 5-HT2A, 5-HT2B, 5-HT2C receptor subtypes are involved in mediating the VLO-induced antiallodynia in the neuropathic pain state.

Learn More >

Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy.

Platinum-based therapeutics are used to manage many forms of cancer, but frequently result in peripheral neuropathy. Currently, the only option available to attenuate chemotherapy-induced neuropathy is to limit or discontinue this treatment. Sphingosine 1-phosphate (S1P) is a lipid-based signaling molecule involved in neuroinflammatory processes by interacting with its five cognate receptors: S1P In this study, using a combination of drug pharmacodynamics, analysis in human study participants, disease modeling in rodents, and cell-based assays, we examined whether S1P signaling may represent a potential target in the treatment of chemotherapy-induced neuropathy. To this end, we first investigated the effects of platinum-based drugs on plasma S1P levels in human cancer patients. Our analysis revealed that oxaliplatin treatment specifically increases one S1P species, d16:1 S1P, in these patients. Although d16:1 S1P is an S1P agonist, it has lower potency than the most abundant S1P species (d18:1 S1P). Therefore, as d16:1 S1P concentration increases, it is likely to disproportionately activate proinflammatory S1P signaling, shifting the balance away from S1P We further show that a selective S1P agonist, CYM-5478, reduces allodynia in a rat model of cisplatin-induced neuropathy and attenuates the associated inflammatory processes in the dorsal root ganglia, likely by activating stress response proteins, including ATF3 and HO-1. Cumulatively, the findings of our study suggest that the development of a specific S1P agonist may represent a promising therapeutic approach for the management of chemotherapy-induced neuropathy.

Learn More >

Search