I am a
Home I AM A Search Login

Animal Studies

Share this

Vagus nerve stimulation inhibits cortical spreading depression exclusively via central mechanisms.

Experimental and clinical data strongly support vagus nerve stimulation (VNS) as a novel treatment in migraine. VNS acutely suppresses cortical spreading depression (CSD) susceptibility, an experimental model that has been used to screen for migraine therapies. However, mechanisms underlying VNS efficacy on CSD are unknown. Here, we interrogated the central and peripheral mechanisms using VNS delivered either invasively (iVNS) or non-invasively (nVNS) in male Sprague-dawley rats. CSD susceptibility was evaluated 40 min after the stimulation. iVNS elevated the electrical CSD threshold more than two-fold and decreased KCl-induced CSD frequency by 22% when delivered to intact vagus nerve. Distal vagotomy did not alter iVNS efficacy (2-fold higher threshold and 19% lower frequency in iVNS vs. sham). In contrast, proximal vagotomy completely abolished iVNS effect on CSD. Pharmacological blockade of nucleus tractus solitarius (NTS), the main relay for vagal afferents, by lidocaine or glutamate receptor antagonist CNQX also prevented CSD suppression by nVNS. Supporting a role for both norepinephrine and serotonin, CSD suppression by nVNS was inhibited by more than 50% after abrogating norepinephrinergic or serotonergic neurotransmission alone using specific neurotoxins; abrogating both completely blocked the nVNS effect. Our results suggest that VNS inhibits CSD through central afferents relaying in NTS and projecting to subcortical neuromodulatory centers providing serotonergic and norepinephrinergic innervation to the cortex.

Learn More >

P2X3 and P2X2/3 receptors activation induces articular hyperalgesia by an indirect sensitization of the primary afferent nociceptor in the rats’ knee joint.

We have previously shown that endogenous adenosine 5'-triphosphate (ATP), via P2X3 and P2X2/3 receptors, plays an essential role in carrageenan-induced articular hyperalgesia model in rats' knee joint. In the present study, we used the rat knee joint incapacitation test, Enzyme-Linked Immunosorbent Assay (ELISA), and myeloperoxidase enzyme activity assay, to test the hypothesis that the activation of P2X3 and P2X2/3 receptors by their agonist induces articular hyperalgesia mediated by the inflammatory mediators bradykinin, prostaglandin, sympathomimetic amines, pro-inflammatory cytokines and by neutrophil migration. We also tested the hypothesis that the activation of P2X3 and P2X2/3 receptors contributes to the articular hyperalgesia induced by the inflammatory mediators belonging to carrageenan inflammatory cascade. The non-selective P2X3 and P2X2/3 receptors agonist αβ-meATP induced a dose-dependent articular hyperalgesia, which was significantly reduced by the selective antagonists for P2X3 and P2X2/3 receptors (A-317491), bradykinin B- (DALBK) or B-receptors (bradyzide), β-(atenolol) or β-adrenoceptors (ICI-118,551), by the pre-treatment with cyclooxygenase inhibitor (indomethacin) or with the nonspecific selectin inhibitor (Fucoidan). αβ-meATP induced the release of pro-inflammatory cytokines TNFα, IL-1β, IL-6, and CINC-1, as well as the neutrophil migration. Moreover, the co-administration of A-317491 significantly reduced the articular hyperalgesia induced by bradykinin, prostaglandin E (PGE), and dopamine. These findings suggest that peripheral P2X3 and P2X2/3 receptors activation induces articular hyperalgesia by an indirect sensitization of the primary afferent nociceptor of rats' knee joint through the release of inflammatory mediators. Further, they also indicate that the activation of these purinergic receptors by endogenous ATP mediates the bradykinin-, PGE-, and dopamine-induced articular hyperalgesia.

Learn More >

PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache?

Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) may play an important role in primary headaches. Preclinical evidence suggests that PACAP38 modulates trigeminal nociceptive activity mainly through PAC1 receptors while clinical studies report that plasma concentrations of PACAP38 are elevated in spontaneous attacks of cluster headache and migraine and normalize after treatment with sumatriptan. Intravenous infusion of PACAP38 induces migraine-like attacks in migraineurs and cluster-like attacks in cluster headache patients. A rodent-specific PAC1 receptor antibody Ab181 was developed and its effect on nociceptive neuronal activity in the trigeminocervical complex was investigated in vivo in an electrophysiological model relevant to primary headaches. Ab181 is potent and selective at the rat PAC1 receptor and provides near maximum target coverage at 10 mg/kg for more than 48 hours. Without affecting spontaneous neuronal activity, Ab181 effectively inhibits stimulus-evoked activity in the trigeminocervical complex. Immunohistochemical analysis revealed its binding in the trigeminal ganglion and sphenopalatine ganglion but not within the CNS suggesting a peripheral site of action. The pharmacological approach using a specific PAC1 receptor antibody could provide a novel mechanism with a potential clinical efficacy in the treatment of primary headaches.

Learn More >

Down-regulation of microRNA-34c-5p alleviates neuropathic pain via the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve.

Neuropathic pain is an unfavorable pathological pain, often persistent over time, thus leading to significant impairment of quality of life and public health burden. Notably, microRNAs (miRNAs) have been implicated in the pathophysiological process of neuropathic pain. The potential mechanism by which miR-34c-5p functions in neuropathic pain remains unclear. This study aimed to test the hypothesis that miR-34c-5p can modulate neuropathic pain in rat models with chronic constriction injury (CCI) of sciatic nerve, via interaction with the SIRT1/STAT3 signaling pathway Firstly, SIRT1 was validated as a target gene of miR-34c-5p and could be negatively regulated by miR-34c-5p. We induced miR-34c-5p overexpression/inhibition, SIRT1 knockdown, and STAT3 knockdown in the model rats to assess pain behavior patterns. Meanwhile, dorsal root ganglion (DRG) was transduced with overexpression or knockdown of miR-34c-5p or lipopolysaccharide to induce the production of inflammatory factors. It was observed that miR-34c-5p was up-regulated, and SIRT1 was under-expressed in the DRG neurons of dorsal spinal cords of the CCI rats. Furthermore, the ectopic expression of miR-34c-5p and knockdown of SIRT1 in CCI rats resulted in increased hyperalgesia and inflammation, corresponding to reduced paw withdrawal threshold and paw withdrawal latency, and elevated levels of IL-6, IL-1β and TNF-α. More importantly, miR-34c-5p inhibition reduced the hyperalgesia and inflammation by blocking the STAT3 signaling pathway through up-regulation of SIRT1. Conjointly, our results indicated that the down-regulation of miR-34c-5p could potentially provide sustained relief in neuropathic pain by promoting SIRT1 expression through STAT3 signaling pathway inactivation.

Learn More >

Ketamine relieves depression-like behaviors induced by chronic postsurgical pain in rats through anti-inflammatory, anti-oxidant effects and regulating BDNF expression.

Clinically, chronic postsurgical pain (CPSP) is very common. Many CPSP patients may experience depression. Thus far, little is known about the mechanism of the comorbidity of CPSP and depression. Ketamine has been confirmed to possess analgesic and rapid antidepressant effects, but it is unclear whether ketamine can relieve the comorbidity of CPSP and depression.

Learn More >

GRP receptor and AMPA receptor cooperatively regulate itch-responsive neurons in the spinal dorsal horn.

Gastrin-releasing peptide (GRP) receptor-expressing (GRPR) neurons have a central role in the spinal transmission of itch. Because their fundamental regulatory mechanisms are not yet understood, it is important to determine how such neurons are excited and integrate itch sensations. In this study, we investigated the mechanisms for the activation of itch-responsive GRPR neurons in the spinal dorsal horn (SDH). GRPR neurons expressed the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) containing the GluR2 subunit. In mice, peripherally elicited histaminergic and non-histaminergic itch was prevented by intrathecal (i.t.) administration of the AMPAR antagonist NBQX, which was consistent with the fact that firing of GRPR neurons in SDH under histaminergic and non-histaminergic itch was completely blocked by NBQX, but not by the GRPR antagonist RC-3095. Because GRP neurons in SDH contain glutamate, we investigated the role of GRP (GRP/Glu) neurons in regulating itch. Chemogenetic inhibition of GRP neurons suppressed both histaminergic and non-histaminergic itch without affecting the mechanical pain threshold. In nonhuman primates, i.t. administration of NBQX also attenuated peripherally elicited itch without affecting the thermal pain threshold. In a mouse model of diphenylcyclopropenone (DCP)-induced contact dermatitis, GRP, GRPR, and AMPAR subunits were upregulated in SDH. DCP-induced itch was prevented by either silencing GRP neurons or ablation of GRPR neurons. Altogether, these findings demonstrate that GRP and glutamate cooperatively regulate GRPR AMPAR neurons in SDH, mediating itch sensation. GRP-GRPR and the glutamate-AMPAR system may play pivotal roles in the spinal transmission of itch in rodents and nonhuman primates.

Learn More >

Upregulation of Myeloid Zinc Finger 1 in DRG via Regulating MMP-2/9 and Kv 1.2 Expression Contributes to CFA-induced Inflammatory Pain.

Myeloid zinc finger 1 (MZF1) belongs to the Kruppel family of zinc-finger transcription factors. Recent studies have demonstrated that in dorsal root ganglion (DRG) neurons, MZF1 is involved in the development and maintenance of neuropathic pain. However, the role of MZF1 in inflammatory pain still remains unknown. In the present study, the mechanism of MZF1 in chronic inflammatory pain was investigated in rats received an intraplantar injection of complete Freund's adjuvant (CFA). Subsequently, a series of assays including Western blotting, qRT-PCR, immunohistochemistry, and chromatin immunoprecipitation (ChIP) were performed. We found that CFA led to MZF1 upregulation in ipsilateral L4/5 DRGs. Pre- and post-microinjection of MZF1 siRNA into the ipsi-L5 DRG blocked the development of CFA-induced chronic inflammatory pain and alleviated the mechanical allodynia and thermal hyperalgesia in the maintenance phase. CFA also increased MMP-2/9 and Nav1.8 expression but reduced Kv1.2 and Cav1.2 expression in L4/L5 DRGs. Microinjection of MZF1 siRNA into DRG diminished the CFA-induced changes in MMP-2/9 and Kv1.2 expression. However, the expressions of Nav1.8 and Cav1.2 were not changed by the treatment. Double immunofluorescence staining showed that MMP-2/9 and Kv1.2 were co-localized with MZF1 in DRGs. The ChIP-PCR results revealed that MZF1 binds directly to the promoter region of MMP-2/9 gene. Together, the above results imply that upregulation of MZF1 in DRGs might contribute to the development and maintenance of CFA-induced chronic inflammatory pain by regulating MMP-2/9 and Kv1.2 expression. Targeting DRG-localized MZF1 might be a promising therapeutic strategy for the treatment of chronic inflammatory pain in the clinic.

Learn More >

Active Recharge Burst and Tonic Spinal Cord Stimulation Engage Different Supraspinal Mechanisms: a Functional Magnetic Resonance Imaging Study in Peripherally Injured Chronic Neuropathic Rats.

To assess the supraspinal working mechanisms of the Burst spinal cord stimulation (SCS)-mode we used functional magnetic resonance imaging (fMRI) in chronic neuropathic rats. We hypothesized that active recharge Burst SCS would induce a more profound BOLD signal increase in areas associated with cognitive-emotional aspects of pain, as compared to Tonic SCS.

Learn More >

Mycobacterium tuberculosis Sulfolipid-1 Activates Nociceptive Neurons and Induces Cough.

Pulmonary tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), manifests with a persistent cough as both a primary symptom and mechanism of transmission. The cough reflex can be triggered by nociceptive neurons innervating the lungs, and some bacteria produce neuron-targeting molecules. However, how pulmonary Mtb infection causes cough remains undefined, and whether Mtb produces a neuron-activating, cough-inducing molecule is unknown. Here, we show that an Mtb organic extract activates nociceptive neurons in vitro and identify the Mtb glycolipid sulfolipid-1 (SL-1) as the nociceptive molecule. Mtb organic extracts from mutants lacking SL-1 synthesis cannot activate neurons in vitro or induce cough in a guinea pig model. Finally, Mtb-infected guinea pigs cough in a manner dependent on SL-1 synthesis. Thus, we demonstrate a heretofore unknown molecular mechanism for cough induction by a virulent human pathogen via its production of a complex lipid.

Learn More >

µ-Opioid and Dopamine-D2 Receptor Expression in the Nucleus Accumbens of Male Sprague-Dawley Rats Whose Sucrose Consumption, but not Preference, Decreases after Nerve Injury.

Functional-anatomical changes in reward related brain circuits are described in chronic pain patients who report anhedonia or depressed mood. In pre-clinical rodent models of neuropathic pain there are varying reports of the effects of nerve injury on the motivation to consume sucrose, although hedonic responses to sucrose appear unchanged. These observations are derived from brief periods of exposure to sucrose. When sucrose is available ad libitum over a period of 21 days, there are marked individual differences in consumption. The motivation for, and hedonic experience of, drinking sucrose is mediated in part by dopamine-D2 and µ-opioid receptors in the nucleus accumbens (NAc). This study investigated the effects of chronic constriction injury (CCI) on ad libitum sucrose consumption in male Sprague Dawley rats and the expression of accumbal dopamine D2 and µ-opioid receptors. Nerve injury reduced sucrose drinking predominantly in rats with the highest pre-injury consumption levels. Despite these reductions in consumption, sucrose preferences were stable. In the NAc of rats whose sucrose consumption was affected by CCI, immunohistochemical analyses revealed bilateral reductions of dopamine D2-receptor expression in the core and shell; and a lateralised reduction of µ-opioid receptor expression in the core and dorsomedial shell of the right NAc. These alterations in receptor expression are located in regions which have been identified as hedonic hot and coldspots along an affective-motivational keyboard which directs behaviours either towards, or away from salient stimuli. These changes likely underlie the reduction in sucrose consumption observed in a subgroup of rats following nerve injury.

Learn More >

Search