I am a
Home I AM A Search Login

Animal Studies

Share this

Transcriptomic analysis of long noncoding RNAs and mRNAs expression profiles in the spinal cord of bone cancer pain rats.

Bone cancer pain (BCP) is one of the most common types of chronic cancer pain and its pathogenesis has not been fully understood. Long non-coding RNAs (lncRNAs) are new promising targets in the field of pain research, however, their involvements in BCP have not been reported. In the present study, we established the BCP model by implantation of Walker 256 carcinoma cells into rats' tibial medullary cavity and performed transcriptome sequencing of the ipsilateral lumbar spinal cord to explore changes in expression profiles of lncRNA and mRNA. We identified 1220 differently expressed mRNAs (DEmRNAs) (1171 up-regulated and 49 down-regulated) and 323 differently expressed lncRNAs (DElncRNAs) (246 up-regulated and 77 down-regulated) in BCP model, among which 10 DEmRNAs (5 up-regulated and 5 down-regulated) and 10 DElncRNAs (5 up-regulated and 5 down-regulated) were validated the expression by RT-qPCR. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on the expression of DEmRNAs and DElncRNAs, showing that they were mainly enriched in inflammatory and immunologic processes/pathways. Finally, we constructed a co-expression network and a ceRNA network of DEmRNAs and DElncRNAs to exhibit a potential regulatory mechanism of DElncRNAs, directly regulating protein coding gene expression in cis or in trans and indirectly regulating protein coding gene expression by sponging miRNA. In conclusion, our study provided a landscape of dysregulated lncRNA and mRNA in spinal cord of bone cancer pain and detected novel potential targets for treatment in the future.

Learn More >

PCC0208009, an indirect IDO1 inhibitor, alleviates neuropathic pain and co-morbidities by regulating synaptic plasticity of ACC and amygdala.

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been linked to neuropathic pain and IDO1 inhibitors have been shown to reduce pain in animals. Some studies have indicated that IDO1 expression increased after neuropathic pain in hippocampus and spinal cord, whether these changes existing in anterior cingulate cortex (ACC) and amygdala remains obscure and how IDO1 inhibition leads to analgesia is largely unknown. Here, we evaluated the antinociceptive effect of PCC0208009, an indirect IDO1 inhibitor, on neuropathic pain and examined the related neurobiological mechanisms.

Learn More >

Hippocampal glutamatergic synapses impairment mediated novel-object recognition dysfunction of neuropathic pain in rats.

Cognitive impairment is one of the most common complications associated with chronic pain. Almost 20% of chronic pain patients suffer from cognitive impairment, which may substantially influence their quality of life. Levels of major excitatory neurotransmitters in the central nervous system, and alterations in the glutamatergic system may influence cognitive function and the pain sensory pathway. In the present study, we adopted the spare nerve injury model to establish the progress of chronic pain and investigated the mechanism underlying the cognitive aspect related to it. At behavioral level, using the novel-object recognition test, mechanical hypersensitivity was observed in peripheral nerve injured rats as they exhibited recognition deficits. We showed a dramatic decrease in hippocampal glutamate concentration using nuclear magnetic resonance and reduced glutamatergic synaptic transmission using whole-cell recordings. These were associated with deficient hippocampal long-term potentiation induced by high-frequency stimulation of the Schaffer collateral afferent. Ultra-high performance liquid chromatography revealed lower levels of D-serine in the hippocampus of SNI rats and that D-serine treatment could restore synaptic plasticity and cognitive dysfunction. The reduction of excitatory synapses was also increased by administering D-serine. These findings suggest that chronic pain has a critical effect on synaptic plasticity linked to cognitive function and may built up a new target for the development of cognitive impairment under chronic pain conditions.

Learn More >

Reactive dicarbonyl compounds cause Calcitonin Gene-related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum.

The plasma of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene-Related Peptide (iCGRP) release as a measure of nociceptor activation and found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the mM range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We showed that also at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the μM range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an over-additive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of TRPV1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.

Learn More >

Sex differences in the development of anxiodepressive-like behavior of mice subjected to sciatic nerve cuffing.

We investigated the contribution of nucleus locus ceruleus (LC) to the development of pain-associated affective behavior. Mice of both sexes were subjected to sciatic nerve cuffing, a model of peripheral nerve injury, and monitored for 45 days. While the thermal and mechanical thresholds were equally decreased in both males and females, only the male mice developed anxiodepressive-like behavior, which was complemented by suppressed hippocampal neurogenesis. Furthermore, the LC activity was lower in males when compared to females subjected to sciatic cuffing. Next, we used a chemogenetic approach to modulate the activity of LC projections to the dentate gyrus of the hippocampus in females without cuffs and in males with sciatic cuffs. Sustained inhibition of the LC projections to the dentate gyrus for 15 days induced anxiodepressive-like behavior and reduced the hippocampal neurogenesis in females. Activation of the LC projections to the dentate gyrus for 15 days prevented the development of anxiodepressive-like behavior and increased the hippocampal neurogenesis in males with cuffs. In sum, we demonstrated that the LC projections to the hippocampus link the sensory to the affective component of neuropathic injury and that the female mice are able to dissociate the nociception from affect by maintaining robust LC activity.

Learn More >

Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons.

Toll like receptor 7 (TLR7) is expressed in neurons of the dorsal root ganglion (DRG), but whether it contributes to neuropathic pain is elusive. We found that peripheral nerve injury caused by ligation of the fourth lumbar (L) spinal nerve (SNL) or chronic constriction injury of sciatic nerve led to a significant increase in the expression of TLR7 at mRNA and/or protein levels in mouse injured DRG. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5 expressing TLR7 shRNA into the ipsilateral L DRG alleviated the SNL-induced mechanical, thermal and cold pain hypersensitivities in both male and female mice. This microinjection also attenuated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase ½ (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in L dorsal horn on the ipsilateral side during both development and maintenance periods. Conversely, mimicking this increase through microinjection of AAV5 expressing full-length TLR7 into unilateral L DRGs led to elevations in the amounts of p-ERK1/2 and GFAP in the dorsal horn, augmented responses to mechanical, thermal and cold stimuli, and induced the spontaneous pain on the ipsilateral side in the absence of SNL. Mechanistically, the increased TLR7 activated the NF-κB signaling pathway through promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from the injured DRG neurons. Our findings suggest that DRG TLR7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. TLR7 may be a potential target for therapeutic treatment of this disorder.

Learn More >

Development of Photocrosslinking Probes Based on Huwentoxin-IV to Map the Site of Interaction on Nav1.7.

Voltage-gated sodium (Nav) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype Nav1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate Nav1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of Nav1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on Nav channels.

Learn More >

Xist attenuates acute inflammatory response by female cells.

Biological sex influences inflammatory response, as there is a greater incidence of acute inflammation in men and chronic inflammation in women. Here, we report that acute inflammation is attenuated by X-inactive specific transcript (Xist), a female cell-specific nuclear long noncoding RNA crucial for X-chromosome inactivation. Lipopolysaccharide-mediated acute inflammation increased Xist levels in the cytoplasm of female mouse J774A.1 macrophages and human AML193 monocytes. In both cell types, cytoplasmic Xist colocalizes with the p65 subunit of NF-κB. This interaction was associated with reduced NF-κB nuclear migration, suggesting a novel mechanism to suppress acute inflammation. Further supporting this hypothesis, expression of 5' XIST in male cells significantly reduced IL-6 and NF-κB activity. Adoptive transfer of male splenocytes expressing Xist reduced acute paw swelling in male mice indicating that Xist can have a protective anti-inflammatory effect. These findings show that XIST has functions beyond X chromosome inactivation and suggest that XIST can contribute to sex-specific differences underlying inflammatory response by attenuating acute inflammation in women.

Learn More >

A Thermal Place Preference Test for Discovery of Neuropathic Pain Drugs.

Developing potent non-opioid pain medications is an integral part of the battle to conquer both chronic pain and the current opioid crisis. Although most screening approaches use in vitro surrogate targets, in vivo screening of analgesic candidates is a necessary pre-clinical step in drug discovery. Here, we report the design of a new automated behavioral testing apparatus based on the principle of a thermal place preference test (TPPT). This new design can detect, quantify, and differentiate behavioral responses to cold stimuli between sham and chronic constriction injury (CCI) rodents with up to 12 animals tested simultaneously. At an optimized temperature pair of 12.5°C vs 30.0°C (± 0.5℃), the TPPT design has captured the antinociceptive effects of morphine and pregabalin on CCI rats in individual 10-min tests. Moreover, it can differentiate analgesic effects by morphine or pregabalin from anxiolytic effects by diazepam. The results, along with the relatively low cost to construct the apparatus and moderately high throughput, make our TPPT design applicable for behavioral studies of chronic pain in rodents and for high-throughput in vivo screening of the next generation of pain medications.

Learn More >

A photoswitchable ORG25543 congener enables optical control of glycine transporter 2.

Glycine neurotransmission in the dorsal horn of the spinal cord plays a key role in regulating nociceptive signaling, but in chronic pain states reduced glycine neurotransmission is associated with the development of allodynia and hypersensitivity to painful stimuli. This suggests that restoration of glycine neurotransmission may be therapeutic for the treatment of chronic pain. Glycine Transporter 2 inhibitors have been demonstrated to enhance glycine neurotransmission and provide relief from allodynia in rodent models of chronic pain. In recent years, photoswitchable compounds have been developed to provide the possibility of controlling the activity of target proteins using light. In this study we have developed a photoswitchable non-competitive inhibitor of Glycine Transporter 2 that has different affinities for the transporter at 365 nm compared to 470 nm light.

Learn More >

Search