I am a
Home I AM A Search Login

Animal Studies

Share this

The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala.

The parabrachial nucleus (PBN) is one of the major targets of spinal projection neurons and plays important roles in pain. However, the architecture of the spinoparabrachial pathway underlying its functional role in nociceptive information processing remains elusive. Here, we report that the PBN directly relays nociceptive signals from the spinal cord to the intralaminar thalamic nuclei (ILN). We demonstrate that the spinal cord connects with the PBN in a bilateral manner and that the ipsilateral spinoparabrachial pathway is critical for nocifensive behavior. We identify Tacr1-expressing neurons as the major neuronal subtype in the PBN that receives direct spinal input and show that these neurons are critical for processing nociceptive information. Furthermore, PBN neurons receiving spinal input form functional monosynaptic excitatory connections with neurons in the ILN, but not the amygdala. Together, our results delineate the neural circuit underlying nocifensive behavior, providing crucial insight into the circuit mechanism underlying nociceptive information processing.

Learn More >

The LFA-1 antagonist BIRT377 reverses neuropathic pain in prenatal alcohol-exposed female rats via actions on peripheral and central neuroimmune function in discrete pain-relevant tissue regions.

Previous reports show that moderate prenatal alcohol exposure (PAE) poses a risk factor for developing neuropathic pain following adult-onset peripheral nerve injury in male rats. Recently, evidence suggests that immune-related mechanisms underlying neuropathic pain in females are different compared to males despite that both sexes develop neuropathy of similar magnitude and duration following chronic constriction injury (CCI) of the sciatic nerve. Data suggest that the actions of peripheral T cells play a greater role in mediating neuropathy in females. The goal of the current study is to identify specificity of immune cell and cytokine changes between PAE and non-PAE neuropathic females by utilizing a well-characterized rodent model of sciatic nerve damage, in an effort to unmask unique signatures of immune-related factors underlying the risk of neuropathy from PAE. Cytokines typically associated with myeloid cell actions such as interleukin (IL)-1β, tumor necrosis factor (TNF), IL-6, IL-4 and IL-10 as well as the neutrophil chemoattractant CXCL1, are examined. In addition, transcription factors and cytokines associated with various differentiated T cell subtypes are examined (anti-inflammatory FOXP3, proinflammatory IL-17A, IL-21, ROR-γt, interferon (IFN)-γ and T-bet). Lymphocyte function associated antigen 1 (LFA-1) is an adhesion molecule expressed on peripheral immune cells including T cells and regulates T cell activation and extravasation into inflamed tissue regions. A potential therapeutic approach was explored with the goal of controlling proinflammatory responses in neuroanatomical regions critical for CCI-induced allodynia by blocking LFA-1 actions using BIRT377. The data show profound development of hindpaw allodynia in adult non-PAE control females following standard CCI, but not following minor CCI, while minor CCI generated allodynia in PAE females. The data also show substantial increases in T cell-associated proinflammatory cytokine mRNA and proteins, along with evidence of augmented myeloid/glial activation (mRNA) and induction of myeloid/glial-related proinflammatory cytokines, CCL2, IL-1β and TNF in discrete regions along the pain pathway (damaged sciatic nerve, dorsal root ganglia; DRG, and spinal cord). Interestingly, the characteristic anti-inflammatory IL-10 protein response to nerve damage is blunted in neuropathic PAE females. Moreover, T cell profiles are predominantly proinflammatory in neuropathic Sac and PAE females, augmented levels of Th17-specific proinflammatory cytokines IL-17A and IL-21, as well as the Th1-specific factor, T-bet, are observed. Similarly, the expression of RORγt, a critical transcription factor for Th17 cells, is detected in the spinal cord of neuropathic females. Blocking peripheral LFA-1 actions with intravenous (i.v.) BIRT377 reverses allodynia in Sac and PAE rats, dampens myeloid (IL-1β, TNF, CXCL1)- and T cell-associated proinflammatory factors (IL-17A and RORγt) and spinal glial activation. Moreover, i.v. BIRT377 treatment reverses the blunted IL-10 response to CCI observed only in neuropathic PAE rats and elevates FOXP3 in pain-reversed Sac rats. Unexpectedly, intrathecal BIRT377 treatment is unable to alter allodynia in either Sac or PAE neuropathic females. Together, these data provide evidence that: 1) fully differentiated proinflammatory Th17 cells recruited at the sciatic nerve, DRGs and lumbar spinal cord may interact with the local environment to shape the immune responses underlying neuropathy in female rats, and, 2) PAE primes peripheral and spinal immune responses in adult females. PAE is a risk factor in females for developing peripheral neuropathy after minor nerve injury.

Learn More >

MKP1 in the Medial Prefrontal Cortex Modulates Chronic Neuropathic Pain via Regulation of p38 and JNK1/2.

Chronic neuropathic pain was an intractable clinical problem and challenge to the quality of life of patients. It is essential to unveil the mechanisms that drive chronic pain so as to formulate new strategies for therapy of chronic pain. The medial prefrontal context (mPFC) plays a pivotal role in pathogenesis of chronic pain. However, its underlying molecular mechanisms are largely elusive. Herein, we demonstrated that mitogen-activated protein kinase-phosphatase1 (MKP1), a negative regulatory factor of mitogen activated protein kinases (MAPKs), was activated and persistently upregulated in the mPFC neurons by qPCR and western blotting assays following chronic constrictive injury (CCI) in mice. Inhibition of MKP1 in the mPFC contralateral to the injury site could reverse CCI-induced pain behavior and neuronal activity either via employment of BCI (MKP1 antagonist) or Lenti-MKP1 particles. Furthermore, we identified the substrates of MKP1 in the mPFC involved in chronic neuropathic pain. The western blot results showed that the phosphorylation of p38 and JNK1/2 was significantly decreased after CCI, while the phosphorylation of ERK1/2 was significantly increased, suggesting that p38 and JNK1/2 were the substrates of MKP1 in mouse mPFC, but not ERK1/2. Additionally, microinjection of BCI in the mPFC contralateral to the injury side could reverse downregulation of p- p38 and p- JNK1/2 in CCI mice. SB203580 (p38 inhibitor) or SP600125 (JNK1/2 inhibitor) could reverse BCI-induced analgesia. Our findings validated that MKP1 in the mPFC modulated chronic neuropathic pain via p38 and JNK1/2, suggesting a possible MKP1-mediated process would participate in neuronal transmission pathways implicated in pain modulation.

Learn More >

Ablation of spinal cord estrogen receptor α-expressing interneurons reduces chemically-induced modalities of pain and itch.

Estrogens are presumed to underlie, at least in part, the greater pain sensitivity and chronic pain prevalence that women experience compared to men. Although previous studies revealed populations of estrogen receptor-expressing neurons in primary afferents and in superficial dorsal horn neurons, there is little to no information as to the contribution of these neurons to the generation of acute and chronic pain. Here we molecularly characterized neurons in the mouse superficial spinal cord dorsal horn that express estrogen receptor α (ERα) and explored the behavioral consequences of their ablation. We found that spinal ERα-positive neurons are largely excitatory interneurons and many co-express substance P, a marker for a discrete subset of nociceptive, excitatory interneurons. After viral, caspase-mediated ablation of spinal ERα-expressing cells, we observed a significant decrease in the first phase of the formalin test, but in male mice only. Decreased nocifensive behavior was also observed in the second phase but only after combining results from male and female mice. ERα-expressing neuron-ablation also reduced pruritogen-induced scratching in both male and female mice. There were no ablation-related changes in mechanical or heat withdrawal thresholds or in capsaicin-induced nocifensive behavior. In chronic pain models, we found no change in Complete Freund's adjuvant-induced thermal or mechanical hypersensitivity, or in partial sciatic nerve injury-induced mechanical allodynia. We conclude that ERα labels a subpopulation of excitatory interneurons that are specifically involved in chemically-evoked persistent pain and pruritogen-induced itch. This article is protected by copyright. All rights reserved.

Learn More >

Ubiquitination and functional modification of GluN2B subunit-containing NMDA receptors by Cbl-b in the spinal cord dorsal horn.

-methyl-d-aspartate (NMDA) glutamate receptors (NMDARs) containing GluN2B subunits are prevalent early after birth in most brain regions in rodents. Upon synapse maturation, GluN2B is progressively removed from synapses, which affects NMDAR function and synaptic plasticity. Aberrant recruitment of GluN2B into mature synapses has been implicated in several neuropathologies that afflict adults. We found that the E3 ubiquitin ligase Cbl-b was enriched in the spinal cord dorsal horn neurons of mice and rats and suppressed GluN2B abundance during development and inflammatory pain. Cbl-b abundance increased from postnatal day 1 (P1) to P14, a critical time period for synapse maturation. Through its N-terminal tyrosine kinase binding domain, Cbl-b interacted with GluN2B. Ubiquitination of GluN2B by Cbl-b decreased the synaptic transmission mediated by GluN2B-containing NMDARs. Knocking down Cbl-b in vivo during P1 to P14 led to sustained retention of GluN2B at dorsal horn synapses, suggesting that Cbl-b limits the synaptic abundance of GluN2B in adult mice. However, peripheral inflammation induced by intraplantar injection of complete Freund's adjuvant resulted in the dephosphorylation of Cbl-b at Tyr, which impaired its binding to and ubiquitylation of GluN2B, enabling the reappearance of GluN2B-containing NMDARs at synapses. Expression of a phosphomimic Cbl-b mutant in the dorsal horn suppressed both GluN2B-mediated synaptic currents and manifestations of pain induced by inflammation. The findings indicate a ubiquitin-mediated developmental switch in NMDAR subunit composition that is dysregulated by inflammation, which can enhance nociception.

Learn More >

Input-output connections of LJA5 prodynorphin neurons.

Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain. Sensory information may be modulated by projections from the brain to the spinal cord, but the neural substrates for top-down sensory control are incompletely understood. We identified a novel population of inhibitory neurons in the mouse brainstem, distinguished by their expression of prodynorphin, which we named LJA5. Here, we identify a similar group of pdyn+ neurons in the human brainstem, and we define the efferent and afferent projection patterns of LJA5 neurons in mouse. Using specific genetic tools, we selectively traced the projections of the pdyn-expressing LJA5 neurons through the brain and spinal cord. Terminal fields were densest in the lateral and ventrolateral periaqueductal grey (PAG), lateral parabrachial nucleus (LPB), caudal pressor area, and lamina I of the spinal trigeminal nucleus and all levels of the spinal cord. We then labeled cell types in the PAG, LPB, medulla, and spinal cord to better define the specific targets of LJA5 boutons. LJA5 neurons send the only known inhibitory descending projection specifically to lamina I of the spinal cord, which transmits afferent pain, temperature, and itch information up to the brain. Using retrograde tracing, we found LJA5 neurons receive inputs from sensory and stress areas such as somatosensory/insular cortex, preoptic area, paraventricular nucleus, dorsomedial nucleus and lateral hypothalamus, PAG, and LPB. This pattern of inputs and outputs suggest LJA5 neurons are uniquely positioned to be activated by sensation and stress, and in turn, inhibit pain and itch. This article is protected by copyright. All rights reserved.

Learn More >

Serotonin and noradrenaline modulate chronic itch processing in mice.

The roles of serotonin and noradrenaline in the modulation of chronic pruriceptive processing currently remain unclear. To clarify the contribution of serotonin and noradrenaline to chronic itch, the effects of the administration of antidepressants or noradrenaline reuptake inhibitors were evaluated in the present study. A pretreatment with milnacipran, a serotonin and noradrenaline reuptake inhibitor, and mirtazapine, a noradrenergic and specific serotonergic antidepressant, attenuated the induction of spontaneous scratching behavior in mice with chronic itch. The administration of a serotonin reuptake inhibitor, such as fluvoxamine and paroxetine, but not escitalopram, or a noradrenaline reuptake inhibitor, such as atomoxetine and nisoxetine, ameliorated the induction of spontaneous scratching behavior in mice with chronic itch. Furthermore, this attenuation was reversed by the administration of yohimbine, a selective α-adrenoceptor antagonist, or methysergide, a non-selective serotonin receptor antagonist. These results suggest that elevated serotonin and noradrenaline levels are involved in the attenuation of scratching behavior induced by chronic itch, and serotonin receptors and an α-adrenoceptor play a crucial role in chronic pruriceptive processing.

Learn More >

Peripheral nerve injury reduces the excitation-inhibition balance of basolateral amygdala inputs to prelimbic pyramidal neurons projecting to the periaqueductal gray.

Cellular and synaptic mechanisms underlying how chronic pain induces maladaptive alterations to local circuits in the medial prefrontal cortex (mPFC), while emerging, remain unresolved. Consistent evidence shows that chronic pain attenuates activity in the prelimbic (PL) cortex, a mPFC subregion. This reduced activity is thought to be driven by increased inhibitory tone within PL circuits. Enhanced input from the basolateral amygdala (BLA) to inhibitory neurons in PL cortex is one well-received mechanism for this circuit change. In mice, we used retrograde labeling, brain slice recordings, and optogenetics to selectively stimulate and record ascending BLA inputs onto PL neurons that send projections to the periaqueductal gray (PAG), which is a midbrain structure that plays a significant role in endogenous analgesia. Activating BLA projections evoked both excitatory and inhibitory currents in cortico-PAG (CP) neurons, as we have shown previously. We measured changes to the ratio of BLA-evoked excitatory to inhibitory currents in the spared nerve injury (SNI) model of neuropathic pain. Our analysis reveals a reduced excitation-inhibition (E/I) ratio of BLA inputs to PL-CP neurons 7 days after SNI. The E/I ratio of BLA inputs to CP neurons in neighboring infralimbic (IL) cortex was unchanged in SNI animals. Collectively, this study reveals that the overall E/I balance of BLA inputs to PL neurons projecting to the PAG is reduced in a robust neuropathic pain model. Overall, our findings provide new mechanistic insight into how nerve injury produces dysfunction in PL circuits connected to structures involved in pain modulation.

Learn More >

Identification of a new functional domain of Nogo-A that promotes inflammatory pain and inhibits neurite growth through binding to NgR1.

Nogo-A is a key inhibitory molecule to axon regeneration, and plays diverse roles in other pathological conditions, such as stroke, schizophrenia, and neurodegenerative diseases. Nogo-66 and Nogo-Δ20 fragments are two known functional domains of Nogo-A, which act through the Nogo-66 receptor (NgR1) and sphingosine-1-phosphate receptor 2 (S1PR2), respectively. Here, we reported a new functional domain of Nogo-A, Nogo-A aa 846-861, was identified in the Nogo-A-specific segment that promotes complete Freund's adjuvant (CFA)-induced inflammatory pain. Intrathecal injection of its antagonist peptide 846-861PE or the specific antibody attenuated the CFA-induced inflammatory heat hyperalgesia. The 846-861 PE reduced the content of transient receptor potential vanilloid subfamily member 1 (TRPV1) in dorsal root ganglia (DRG) and decreased the response of DRG neurons to capsaicin. These effects were accompanied by a reduction in LIMK/cofilin phosphorylation and actin polymerization. GST pull-down and fluorescence resonance energy transfer (FRET) assays both showed that Nogo-A aa 846-861 bound to NgR1. Moreover, we demonstrated that Nogo-A aa 846-861 inhibited neurite outgrowth from cortical neurons and DRG explants. We concluded that Nogo-A aa 846-861 is a novel ligand of NgR1, which activates the downstream signaling pathways that inhibit axon growth and promote inflammatory pain.

Learn More >

Mu-opioids suppress GABAergic synaptic transmission onto orbitofrontal cortex pyramidal neurons with subregional selectivity.

The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion specific manner. However, it is unknown how mu-opioid signalling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in-vitro patch clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist, DAMGO produced a concentration-dependant inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long-lasting and not reversed upon washout of DAMGO, or by application of the mu-opioid receptor antagonist, CTAP, suggesting an inhibitory long-term depression (iLTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/PKA signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Taken together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.Considering that both the OFC and the opioid system regulate reward, motivation, and food intake; understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Secondly, mu-opioids recruit PV+ inputs to suppress inhibitory synaptic transmission in the mOFC. Thirdly, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.

Learn More >

Search