I am a
Home I AM A Search Login

Animal Studies

Share this

Predicting functional effects of missense variants in voltage-gated sodium and calcium channels.

Malfunctions of voltage-gated sodium and calcium channels (encoded by and family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF ( = 518) and GOF ( = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in and (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the family genes.

Learn More >

Co-expression gene modules involved in cisplatin-induced peripheral neuropathy according to sensitivity, status and severity.

Chemotherapy-induced peripheral neuropathy (CIPN) is among the most disabling and frustrating problems for cancer survivors. The neurotoxicity caused by cisplatin varies greatly among patients, and few predictors of appearance, duration of symptoms, susceptibility, or severity are available. A deeper understanding of the mechanisms underlying individual differences in status, severity, or sensitivity in response to cisplatin treatment is therefore required. By analyzing the GSE64174 gene expression profile and constructing a weighted gene co-expression network analysis (WGCNA) network, we screened gene modules and hub genes related to CIPN status, severity and sensitivity. We first identified the transcriptome profile of mouse dorsal root ganglion (DRG) samples and transformed their genes to human DRG counterparts. We then constructed WGCNA gene modules via optimal soft-threshold power-identification and module-preservation analysis. Comprehensive analysis and identification of module hub genes were performed via functional-enrichment analysis and significant common hub genes were identified, including "Cytoscape_cytoHubba," "Cytoscape_MCODE," and "Metascape_MCODE." Brown, green, and blue modules were selected to represent CIPN sensitivity, status and severity, resepectively, via trait-module correlational analysis. Additionally, functional enrichment analysis results indicated that these three modules were associated with some crucial biological functions, such as neutrophil migration, chemokine-mediated signaling pathway, and PI3K-Akt signaling pathway. We then identified seven common hub genes via three methods, including CXCL10, CCL21, CCR2, CXCR4, TLR4, NPY1R, and GALR2, related to CIPN status, severity and sensitivity. Our results provide possible targets and mechanism insights into the development and progress of CIPN, which can guide further transformation and pre-clinical research.

Learn More >

Schwann Cell Autocrine and Paracrine Regulatory Mechanisms, Mediated by Allopregnanolone and BDNF, Modulate PKCε in Peripheral Sensory Neurons.

Protein kinase type C-ε (PKCε) plays important roles in the sensitization of primary afferent nociceptors, such as ion channel phosphorylation, that in turn promotes mechanical hyperalgesia and pain chronification. In these neurons, PKCε is modulated through the local release of mediators by the surrounding Schwann cells (SCs). The progesterone metabolite allopregnanolone (ALLO) is endogenously synthesized by SCs, whereas it has proven to be a crucial mediator of neuron-glia interaction in peripheral nerve fibers. Biomolecular and pharmacological studies on rat primary SCs and dorsal root ganglia (DRG) neuronal cultures were aimed at investigating the hypothesis that ALLO modulates neuronal PKCε, playing a role in peripheral nociception. We found that SCs tonically release ALLO, which, in turn, autocrinally upregulated the synthesis of the growth factor brain-derived neurotrophic factor (BDNF). Subsequently, glial BDNF paracrinally activates PKCε via trkB in DRG sensory neurons. Herein, we report a novel mechanism of SCs-neuron cross-talk in the peripheral nervous system, highlighting a key role of ALLO and BDNF in nociceptor sensitization. These findings emphasize promising targets for inhibiting the development and chronification of neuropathic pain.

Learn More >

Spinal interleukin-6 contributes to central sensitisation and persistent pain hypersensitivity in a model of juvenile idiopathic arthritis.

Pain is the most debilitating symptom in juvenile idiopathic arthritis. As pain correlates poorly to the extent of joint pathology, therapies that control joint inflammation are often inadequate as analgesics. We test the hypothesis that juvenile joint inflammation leads to sensitisation of nociceptive circuits in the central nervous system, which is maintained by cytokine expression in the spinal cord. Here, transient joint inflammation was induced in postnatal day (P)21 and P40 male Sprague-Dawley rats with a single intra-articular ankle injection of complete Freund's adjuvant. Hindpaw mechanical pain sensitivity was assessed using von Frey hair and weight bearing tests. Spinal neuron activity was measured using in vivo extracellular recording and immunohistochemistry. Joint and spinal dorsal horn TNFα, IL1β and IL6 protein expression was quantified using western blotting. We observed greater mechanical hyperalgesia following joint inflammation in P21 compared to P40 rats, despite comparable duration of swelling and joint inflammatory cytokine levels. This is mirrored by spinal neuron hypersensitivity, which also outlasted the duration of active joint inflammation. The cytokine profile in the spinal cord differed at the two ages: prolonged upregulation of spinal IL6 was observed in P21, but not P40 rats. Finally, spinal application of anti-IL-6 antibody (30ng) reduced the mechanical hyperalgesia and neuronal activation. Our results indicate that persistent upregulation of pro-inflammatory cytokines in the spinal dorsal horn is associated with neuronal sensitisation and mechanical hyperalgesia in juvenile rats, beyond the progress of joint pathology. In addition, we provide proof of concept that spinal IL6 is a key target for treating persistent pain in JIA.

Learn More >

AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury.

Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury.

Learn More >

Slow-sustained delivery of naloxone reduces typical naloxone-induced precipitated opioid withdrawal effects in male morphine-dependent mice.

Thousands of individuals die each year from opioid-related overdoses. While naloxone (Narcan®) is currently the most widely employed treatment to reverse opioid toxicity, high or repeated doses of this antidote often lead to precipitated opioid withdrawal (POW). We hypothesized that a slow linear release of naloxone from a nanoparticle would induce fewer POW symptoms compared to high-dose free naloxone. First, we measured the acute impact of covalent naloxone nanoparticles (Nal-cNPs) on morphine-induced antinociception in the hotplate test. We found that Nal-cNP treatment blocked the antinociceptive effect of morphine within 15 min of administration. Next, we tested the impact of Nal-cNPs on POW symptoms in male morphine-dependent mice. To induce morphine dependence, mice were treated with 5 mg/kg morphine (or saline) twice-daily for six consecutive days. On day 7 mice received 5 mg/kg morphine (or saline) injections 2 hr prior to receiving treatment of either unmodified free naloxone, a high or low dose of Nal-cNP, empty nanoparticle (cNP-empty), or saline. Behavior was analyzed for 0-6 hr followed by 24 and 48 hr time points after treatment. As expected, free naloxone induced a significant increase in POW behavior in morphine-dependent mice compared to saline-treated mice upon free naloxone administration. In comparison, reduced POW behavior was observed with both doses of Nal-cNP. Side effects of Nal-cNP on locomotion and fecal boli production were measured and no significant side-effects were observed. Overall, our data show that sustained release of naloxone from a covalent nanoparticle does not induce severe POW symptoms in morphine-dependent mice.

Learn More >

Somatotopic Organization and Intensity Dependence in Driving Distinct NPY-Expressing Sympathetic Pathways by Electroacupuncture.

The neuroanatomical basis behind acupuncture practice is still poorly understood. Here, we used intersectional genetic strategy to ablate NPY noradrenergic neurons and/or adrenal chromaffin cells. Using endotoxin-induced systemic inflammation as a model, we found that electroacupuncture stimulation (ES) drives sympathetic pathways in somatotopy- and intensity-dependent manners. Low-intensity ES at hindlimb regions drives the vagal-adrenal axis, producing anti-inflammatory effects that depend on NPY adrenal chromaffin cells. High-intensity ES at the abdomen activates NPY splenic noradrenergic neurons via the spinal-sympathetic axis; these neurons engage incoherent feedforward regulatory loops via activation of distinct adrenergic receptors (ARs), and their ES-evoked activation produces either anti- or pro-inflammatory effects due to disease-state-dependent changes in AR profiles. The revelation of somatotopic organization and intensity dependency in driving distinct autonomic pathways could form a road map for optimizing stimulation parameters to improve both efficacy and safety in using acupuncture as a therapeutic modality.

Learn More >

CXCR3 contributes to neuropathic pain via ERK activation in the anterior cingulate cortex.

The anterior cingulate cortex (ACC) is activated by noxious stimuli and is involved in the affective component of pain processing; but its role in the sensory component of pain remains largely unknown. Studies have verified that Chemokine (C-X-C motif) receptor 3 (CXCR3) is involved in nociceptive sensitization in the spinal cord after peripheral nerve injury; however, the expression of CXCR3 in the ACC and its role in neuropathic pain has not been reported. Here, we showed that CXCR3 co-localized with neurons in the ACC and the upregulation of CXCR3 corresponded with hypersensitive behaviors after a chronic constriction injury of the sciatic nerve. Pharmacological blockade of CXCR3 using local injection of its inhibitor, AMG487, into the ACC significantly attenuated hyperalgesia induced by chronic constriction injury and suppressed the phosphorylation of extracellular signal-regulated kinase (ERK). Collectively, these results suggest that CXCR3 in the ACC is involved in hyperalgesia induced by peripheral nerve injury and ERK may be a downstream target.

Learn More >

Astrocytic STAT3 activation and chronic itch require IPR1/TRPC-dependent Ca signals in mice.

Chronic itch is a debilitating symptom of inflammatory skin diseases, but the underlying mechanism is poorly understood. We have recently demonstrated that astrocytes in the spinal dorsal horn become reactive in models of atopic and contact dermatitis via activation of the transcription factor STAT3 and critically contribute to chronic itch. In general, STAT3 is transiently activated; however, STAT3 activation in reactive astrocytes of chronic itch model mice persistently occurs via an unknown mechanism.

Learn More >

Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic metaplasticity and modality-specific sensitization.

GABA/glycine-mediated neuronal inhibition critically depends on intracellular chloride (Cl) concentration which is mainly regulated by the K-Cl co-transporter 2 (KCC2) in the adult central nervous system (CNS). KCC2 heterogeneity thus affects information processing across CNS areas. Here, we uncover a gradient in Cl extrusion capacity across the superficial dorsal horn (SDH) of the spinal cord (laminae I-II: LI-LII), which remains concealed under low Cl load. Under high Cl load or heightened synaptic drive, lower Cl extrusion is unveiled in LI, as expected from the gradient in KCC2 expression found across the SDH. Blocking TrkB receptors increases KCC2 in LI, pointing to differential constitutive TrkB activation across laminae. Higher Cl lability in LI results in rapidly collapsing inhibition, and a form of activity-dependent synaptic plasticity expressed as a continuous facilitation of excitatory responses. The higher metaplasticity in LI as compared to LII differentially affects sensitization to thermal and mechanical input. Thus, inconspicuous heterogeneity of Cl extrusion across laminae critically shapes plasticity for selective nociceptive modalities.

Learn More >

Search