I am a
Home I AM A Search Login

Animal Studies

Share this

IMT504 Provides Analgesia by Modulating Cell Infiltrate and Inflammatory Milieu in a Chronic Pain Model.

IMT504 is a non-CPG, non-coding synthetic oligodeoxinucleotide (ODN) with immunomodulatory properties and a novel inhibitory role in pain transmission, exerting long-lasting analgesic effects upon multiple systemic administrations. However, its mechanisms of anti-nociceptive action are still poorly understood. In the present study in male adult rats undergoing complete Freund's adjuvant-induced hindpaw inflammation, we focused in the analysis of the immunomodulatory role of IMT504 over the cellular infiltrate, the impact on the inflammatory milieu, and the correlation with its anti-allodynic role. By means of behavioral analysis, we determined that a single subcutaneous administration of 6 mg/kg of IMT504 is sufficient to exert a 6-week-long full reversal of mechanical and cold allodynia, compromising neither acute pain perception nor locomotor activity. Importantly, we found that the anti-nociceptive effects of systemic IMT504, plus quick reductions in hindpaw edema, were associated with a modulatory action upon cellular infiltrate of B-cells, macrophages and CD8 T-cells populations. Accordingly, we observed a profound downregulation of several inflammatory leukocyte adhesion proteins, chemokines and cytokines, as well as of β-endorphin and an increase in the anti-inflammatory cytokine, interleukin-10. Altogether, we demonstrate that at least part of the anti-nociceptive actions of IMT504 relate to the modulation of the peripheral immune system at the site of injury, favoring a switch from pro- to anti-inflammatory conditions, and provide further support to its use against chronic inflammatory pain. Graphical abstract GA short description – IMT504 systemic Administration. Systemic administration of the non-CpG ODN IMT504 results in a 6-week long blockade of pain-like behavior in association with anti-inflammatory responses at the site of injury. These include modulation of lymphoid and myeloid populations plus downregulated expression levels of multiple pro-inflammatory cytokines and β-endorphin. Nocifensive responses and locomotion remain unaltered.

Learn More >

Intensive locomotor training provides sustained alleviation of chronic spinal cord injury associated neuropathic pain: A 2-year preclinical study.

Neuropathic pain often accompanies the functional deficits associated with spinal cord injury (SCI) and further reduces a patient's quality of life. Clinical and pre-clinical research is beginning to highlight the beneficial role that rehabilitative therapies such as locomotor training can have not only on functional recovery but also on chronic pain management. Our group has previously developed an intensive locomotor training (ILT) treadmill protocol in a rat that reduced SCI neuropathic pain symptoms for at least 3 months. We have extended these findings in the current study to evaluate the ability of regular ILT regimen over a 2 year period post-SCI to maintain neuropathic pain reduction. To assess this, the rat clip compression SCI model (T7/8) was used and treadmill training initiated starting 4 weeks after SCI and continuing through the duration of the study. Results showed continued suppression of SCI neuropathic pain responses (reduced mechanical, heat, and cold hypersensitivity throughout the entire time course of the study. In contrast, non-exercised rats showed consistent and sustained neuropathic pain responses during this period. In addition, prolonged survival and improved locomotor outcomes were observed in rats undergoing ILT as the study longevity progressed. Potential contributory mechanisms underlying beneficial effects of ILT include reduced inflammation and restoration of antinociceptive inhibitory processes as indicated by neurochemical assays in spinal tissue of remaining rats at 2 years post-SCI. The benefits of chronic ILT suggest long-term physical exercise therapy can produce powerful and prolonged management of neuropathic pain, partly through sustained reduction of spinal pathological processes.

Learn More >

Analgesic Effects of Topical Amitriptyline in Patients with Chemotherapy-Induced Peripheral Neuropathy: Mechanistic Insights from Studies in Mice.

Oral amitriptyline hydrochloride (amitriptyline) is ineffective against some forms of chronic pain and is often associated with dose-limiting adverse events. We evaluated the potential effectiveness of high-dose topical amitriptyline in a preliminary case series of chemotherapy-induced peripheral neuropathy (CIPN) patients and investigated whether local or systemic adverse events associated with the use of amitriptyline were present in these patients. We also investigated the mechanism of action of topically administered amitriptyline in mice. Our case series suggested that topical 10% amitriptyline treatment was associated with pain relief in CIPN patients, without the side effects associated with systemic absorption. Topical amitriptyline significantly increased mechanical withdrawal thresholds when applied to the hind paw of mice, and inhibited the firing responses of C-, Aβ- and Aδ-type peripheral nerve fibers in ex vivo skin-saphenous nerve preparations. Whole-cell patch-clamp recordings on cultured sensory neurons revealed that amitriptyline was a potent inhibitor of the main voltage-gated sodium channels (Nav1.7, Nav1.8 and Nav1.9) found in nociceptors. Calcium imaging showed that amitriptyline activated the transient receptor potential cation channel, TRPA1. Our case series indicated that high-dose 10% topical amitriptyline could alleviate neuropathic pain without adverse local or systemic effects. This analgesic action appeared to be mediated through local inhibition of voltage-gated sodium channels. PERSPECTIVE: Our preliminary case series suggested that topical amitriptyline could provide effective pain relief for chemotherapy-induced peripheral neuropathy patients without any systemic or local adverse events. Investigation of the mechanism of this analgesic action in mice revealed that this activity was mediated through local inhibition of nociceptor Nav channels.

Learn More >

Longitudinal transcriptomic profiling in carrageenan-induced rat hind paw peripheral inflammation and hyperalgesia reveals progressive recruitment of innate immune system components.

Pain is a common but potentially debilitating symptom, often requiring complex management strategies. To understand the molecular dynamics of peripheral inflammation and nociceptive pain, we investigated longitudinal changes in behavior, tissue structure, and transcriptomic profiles in the rat carrageenan-induced peripheral inflammation model. Sequential changes in the number of differentially expressed genes are consistent with temporal recruitment of key leukocyte populations, mainly neutrophils and macrophages with each wave being preceded by upregulation of the cell-specific chemoattractants, Cxcl1 and Cxcl2, and Ccl2 and Ccl7, respectively. We defined 12 temporal gene clusters based on expression pattern. Within the patterns we extracted genes comprising the inflammatory secretome and others related to nociceptive tissue remodeling and to sensory perception of pain. Structural tissue changes, involving upregulation of multiple collagens occurred as soon as 1-hour post-injection, consistent with inflammatory tissue remodeling. Inflammatory expression profiling revealed a broad-spectrum, temporally orchestrated molecular and cellular recruitment process. The results provide numerous potential targets for modulation of pain and inflammation. PERSPECTIVE: This study investigates the highly orchestrated biological response during tissue inflammation with precise assessment of molecular dynamics at the transcriptional level. The results identify transcriptional changes that define an evolving inflammatory state in rats. This study provides foundational data for identifying markers of, and potential treatments for, inflammation and pain in patients.

Learn More >

Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice.

Microglia play an important role in the central sensitization and chronic pain. However, a direct connection between microglial function and pain development in vivo remains incompletely understood. To address this issue, we applied chemogenetic approach by using CXCR1:R26 transgenic mice to enable expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (Gi DREADD) in microglia. We found that microglial Gi DREADD activation inhibited spinal nerve transection (SNT)-induced microglial reactivity as well as chronic pain in both male and female mice. Gi DREADD activation downregulated the transcription factor interferon regulatory factor 8 (IRF8) and its downstream target pro-inflammatory cytokine interleukin 1 beta (IL-1β). Using in vivo spinal cord recording, we found that activation of microglial Gi DREADD attenuated synaptic transmission following SNT. Our results demonstrate that microglial Gi DREADD reduces neuroinflammation, synaptic function and neuropathic pain after SNT. Thus, chemogenetic approaches provide a potential opportunity for interrogating microglial function and neuropathic pain treatment.

Learn More >

The Sigma-2 receptor / transmembrane protein 97 (σ2R/TMEM97) modulator JVW-1034 reduces heavy alcohol drinking and associated pain states in male mice.

Alcohol Use Disorder (AUD) is a chronic relapsing disorder characterized by compulsive alcohol intake, loss of control over alcohol intake, and a negative emotional state when access to alcohol is prevented. AUD is also closely tied to pain, as repeated alcohol drinking leads to increased pain sensitivity during withdrawal. The sigma-2 receptor, recently identified as transmembrane protein 97 (σ2R/TMEM97), is an integral membrane protein involved in cholesterol homeostasis and lipid metabolism. Selective σ2R/Tmem97 modulators have been recently shown to relieve mechanical hypersensitivity in animal models of neuropathic pain as well as to attenuate alcohol withdrawal signs in C. elegans and to reduce alcohol drinking in rats, suggesting a potential key role for this protein in alcohol-related behaviors. In this study, we tested the effects of a potent and selective σ2R/TMEM97 ligand, JVW-1034, on heavy alcohol drinking and alcohol-induced heightened pain states in mice using an intermittent access model. Administration of JVW-1034 decreased both ethanol intake and preference for ethanol, without affecting water intake, total fluid intake, or food intake. Notably, this effect was specific for alcohol, as JVW-1034 had no effect on sucrose intake. Furthermore, JVW-1034 reduced both thermal hyperalgesia and mechanical hypersensitivity in ethanol withdrawn mice. Our data provide important evidence that modulation of σ2R/TMEM97 with small molecules can mediate heavy alcohol drinking as well as chronic alcohol-induced heightened pain sensitivity, thereby identifying a promising novel pharmacological target for AUD and associated pain states.

Learn More >

Escalating morphine dosing in HIV-1 Tat transgenic mice with sustained Tat exposure reveals an allostatic shift in neuroinflammatory regulation accompanied by increased neuroprotective non-endocannabinoid lipid signaling molecules and amino acids.

Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain.

Learn More >

Direct evidence that the brain reward system is involved in the control of scratching behaviors induced by acute and chronic itch.

In the present study, we demonstrated that there is a direct relationship between scratching behaviors induced by itch and functional changes in the brain reward system. Using a conditional place preference test, the rewarding effect was clearly evoked by scratching under both acute and chronic itch stimuli. The induction of ΔFosB, a member of the Fos family of transcription factors, was observed in dopamine transporter (DAT)-positive dopamine neurons in the ventral tegmental area (VTA) of mice suffering from a chronic itch sensation. Based on a cellular analysis of scratching-activated neurons, these neurons highly expressed tyrosine hydroxylase (TH) and DAT genes in the VTA. Furthermore, in an in vivo microdialysis study, the levels of extracellular dopamine in the nucleus accumbens (NAcc) were significantly increased by transient scratching behaviors. To specifically suppress the mesolimbic dopaminergic pathway using pharmacogenetics, we used the TH-cre/hM4Di mice. Pharmacogenetic suppression of mesolimbic dopaminergic neurons significantly decreased scratching behaviors. Under the itch condition with scratching behaviors restricted by an Elizabethan collar, the induction of ΔFosB was found mostly in corticotropin-releasing hormone (CRH)-containing neurons of the hypothalamic paraventricular nucleus (PVN). These findings suggest that repetitive abnormal scratching behaviors under acute and chronic itch stimuli may activate mesolimbic dopamine neurons along with pleasant emotions, while the restriction of such scratching behaviors may initially induce the activation of PVN-CRH neurons associated with stress.

Learn More >

Serotonin enhances depolarizing spontaneous fluctuations, excitability, and ongoing activity in isolated rat DRG neurons via 5-HT receptors and cAMP-dependent mechanisms.

Ongoing activity in nociceptors, a driver of spontaneous pain, can be generated in dorsal root ganglion neurons in the absence of sensory generator potentials if one or more of three neurophysiological alterations occur – prolonged depolarization of resting membrane potential (RMP), hyperpolarization of action potential (AP) threshold, and/or increased amplitude of depolarizing spontaneous fluctuations of membrane potential (DSFs) to bridge the gap between RMP and AP threshold. Previous work showed that acute, sustained exposure to serotonin (5-HT) hyperpolarized AP threshold and potentiated DSFs, leading to ongoing activity if a separate source of maintained depolarization was present. Cellular signaling pathways that increase DSF amplitude and promote ongoing activity acutely in nociceptors are not known for any neuromodulator. Here, isolated DRG neurons from male rats were used to define the pathway by which low concentrations of 5-HT enhance DSFs, hyperpolarize AP threshold, and promote ongoing activity. A selective 5-HT receptor antagonist blocked these 5-HT-induced hyperexcitable effects, while a selective 5-HT agonist mimicked the effects of 5-HT. Inhibition of cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), attenuated 5-HT's hyperexcitable effects, but a blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels had no significant effect. 5-HT-dependent PKA activation was specific to DRG neurons that bind isolectin B4 (a nonpeptidergic nociceptor marker). 5-HT's effects on AP threshold, DSFs, and ongoing activity were mimicked by a cAMP analog. Sustained exposure to 5-HT promotes ongoing activity in nonpeptidergic nociceptors through the G-coupled 5-HT receptor and downstream cAMP signaling involving both PKA and EPAC.

Learn More >

Neuropathic pain generates silent synapses in thalamic projection to anterior cingulate cortex.

Pain experience can change the central processing of nociceptive inputs, resulting in persistent allodynia and hyperalgesia. However, the underlying circuit mechanisms remain underexplored. Here, we focus on pain-induced remodeling of the projection from the mediodorsal thalamus (MD) to anterior cingulate cortex (ACC), a projection that relays spinal nociceptive input for central processing. Using optogenetics combined with slice electrophysiology, we detected in male mice that 7 days of chronic constriction injury (CCI; achieved by loose ligation of the sciatic nerve) generated AMPA receptor (AMPAR)-silent glutamatergic synapses within the contralateral MD-to-ACC projection. AMPAR-silent synapses are typically GluN2B-enriched nascent glutamatergic synapses that mediate the initial formation of neural circuits during early development. During development, some silent synapses mature and become 'unsilenced' by recruiting and stabilizing AMPARs, consolidating and strengthening the newly formed circuits. Consistent with these synaptogenic features, pain-induced generation of silent synapses was accompanied by increased densities of immature dendritic spines in ACC neurons and increased synaptic weight of GluN2B-containing NMDA receptors (NMDARs) in the MD-to-ACC projection. After prolonged (∼30 days) CCI, injury-generated silent synapses declined to low levels, which likely resulted from a synaptic maturation process that strengthens AMPAR-mediated MD-to-ACC transmission. Consistent with this hypothesis, viral-mediated knockdown of GluN2B in ACC neurons, which prevented pain-induced generation of silent synapses and silent synapse-mediated strengthening of MD-to-ACC projection after prolonged CCI, prevented the development of allodynia. Taken together, our results depict a silent synapse-mediated mechanism through which key supraspinal neural circuits that regulate pain sensitivity are remodeled to induce allodynia and hyperalgesia.

Learn More >

Search