I am a
Home I AM A Search Login

Animal Studies

Share this

KCNQ Channels in the Mesolimbic Reward Circuit Regulate Nociception in Chronic Pain in Mice.

Mesocorticolimbic dopaminergic (DA) neurons have been implicated in regulating nociception in chronic pain, yet the mechanisms are barely understood. Here, we found that chronic constructive injury (CCI) in mice increased the firing activity and decreased the KCNQ channel-mediated M-currents in ventral tegmental area (VTA) DA neurons projecting to the nucleus accumbens (NAc). Chemogenetic inhibition of the VTA-to-NAc DA neurons alleviated CCI-induced thermal nociception. Opposite changes in the firing activity and M-currents were recorded in VTA DA neurons projecting to the medial prefrontal cortex (mPFC) but did not affect nociception. In addition, intra-VTA injection of retigabine, a KCNQ opener, while reversing the changes of the VTA-to-NAc DA neurons, alleviated CCI-induced nociception, and this was abolished by injecting exogenous BDNF into the NAc. Taken together, these findings highlight a vital role of KCNQ channel-mediated modulation of mesolimbic DA activity in regulating thermal nociception in the chronic pain state.

Learn More >

ATF3-Expressing Large-Diameter Sensory Afferents at Acute Stage as Bio-Signatures of Persistent Pain Associated with Lumbar Radiculopathy.

The mechanism of pain chronicity is largely unknown in lumbar radiculopathy (LR). The anatomical location of nerve injury is one of the important factors associated with pain chronicity of LR. Accumulating evidence has shown constriction distal to the dorsal root ganglion (DRG) caused more severe radiculopathy than constriction proximal to the DRG; thereby, the mechanism of pain chronicity in LR could be revealed by comparing the differences in pathological changes of DRGs between nerve constriction distal and proximal to the DRG. Here, we used 2 rat models of LR with nerve constriction distal or proximal to the DRG to probe how the different nerve injury sites could differentially affect pain chronicity and the pathological changes of DRG neuron subpopulations. As expected, rats with nerve constriction distal to the DRG showed more persistent pain behaviors than those with nerve constriction proximal to the DRG in 50% paw withdraw threshold, weight-bearing test, and acetone test. One day after the operation, distal and proximal nerve constriction showed differential pathological changes of DRG. The ratios of activating transcription factor3 (ATF3)-positive DRG neurons were significantly higher in rats with nerve constriction distal to DRG than those with nerve constriction proximal to DRG. In subpopulation analysis, the ratios of ATF3-immunoreactivity (IR) in neurofilament heavy chain (NFH)-positive DRG neurons significantly increased in distal nerve constriction compared to proximal nerve constriction; although, both distal and proximal nerve constriction presented increased ratios of ATF3-IR in calcitonin gene-related peptide (CGRP)-positive DRG neurons. Moreover, the nerve constriction proximal to DRG caused more hypoxia than did that distal to DRG. Together, ATF3 expression in NHF-positive DRG neurons at the acute stage is a potential bio-signature of persistent pain in rat models of LR.

Learn More >

Pruriception and neuronal coding in nociceptor subtypes in human and nonhuman primates.

In humans, intradermal administration of β-alanine (ALA) and bovine adrenal medulla peptide 8-22 (BAM8-22) evokes the sensation of itch. Currently, it is unknown which human dorsal root ganglion (DRG) neurons express the receptors of these pruritogens, MRGPRD and MRGPRX1, respectively, and which cutaneous afferents these pruritogens activate in primate. In situ hybridization studies revealed that MRGPRD and MRGPRX1 are co-expressed in a subpopulation of TRPV1+ human DRG neurons. In electrophysiological recordings in nonhuman primates (), subtypes of polymodal C-fiber nociceptors are preferentially activated by ALA and BAM8-22, with significant overlap. When pruritogens ALA, BAM8-22, and histamine, which activate different subclasses of C-fiber afferents, are administered in combination, human volunteers report itch and nociceptive sensations similar to those induced by a single pruritogen. Our results provide evidence for differences in pruriceptive processing between primates and rodents, and do not support the spatial contrast theory of coding of itch and pain.

Learn More >

The persistent pain transcriptome: identification of cells and molecules activated by hyperalgesia.

During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hrs) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and two receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across two models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.

Learn More >

Early Life Nociception is Influenced by Peripheral Growth Hormone Signaling.

A number of cellular systems work in concert to modulate nociceptive processing in the periphery, but the mechanisms that regulate neonatal nociception may be distinct compared with adults. Our previous work indicated a relationship between neonatal hypersensitivity and growth hormone (GH) signaling. Here, we explored the peripheral mechanisms by which GH modulated neonatal nociception under normal and injury conditions (incision) in male and female mice. We found that GH receptor (GHr) signaling in primary afferents maintains a tonic inhibition of peripheral hypersensitivity. After injury, a macrophage dependent displacement of injury-site GH was found to modulate neuronal transcription at least in part via serum response factor (SRF) regulation. A single GH injection into the injured hindpaw muscle effectively restored available GH signaling to neurons and prevented acute pain-like behaviors, primary afferent sensitization, and neuronal gene expression changes. GH treatment also inhibited long-term somatosensory changes observed after repeated peripheral insult. Results may indicate a novel mechanism of neonatal nociception.Although it is noted that mechanisms of pain development in early life are unique compared with adults, little research focuses on neonatal-specific peripheral mechanisms of nociception. This gap is evident in the lack of specialized care for infants following an injury including surgeries. This report evaluates how distinct cellular systems in the periphery including the endocrine, immune and nervous systems work together to modulate neonatal-specific nociception. We uncovered a novel mechanism by which muscle injury induces a macrophage-dependent sequestration of peripheral growth hormone (GH) that effectively removes its normal tonic inhibition of neonatal nociceptors to promote acute pain-like behaviors. Results indicate a possible new strategy for treatment of neonatal postsurgical pain.

Learn More >

The impact of foot shock-induced stress on pain-related behavior associated with burn injury.

Acute pain is prevalent following burn injury and can often transition to chronic pain. Prolonged acute pain is an important risk factor for chronic pain and there is little preclinical research to address this problem. Using a mouse model of second-degree burn, we investigated whether pre-existing stress influences pain(sensitivity) after a burn injury. We introduced a contribution of stress in two different ways: (1) the use of foot-shock as a pre-injury stressor or (2) the use of A/J mice to represent higher pre-existing stress compared to C57Bl/6 mice. C57Bl/6 and A/J mice were exposed to repeated mild foot shock to induce stress for 10 continuous days and mice underwent either burn injury or sham burn injury of the plantar surface of the right hind paw. Assessments of mechanical and thermal sensitivities of the injured and uninjured paw were conducted during the shock protocol and at intervals up to 82-day post-burn injury. In both strains of mice that underwent burn injury, thermal hypersensitivity and mechanical allodynia appeared rapidly in the ipsilateral paw. Mice that were stressed took much longer to recover their hind paw mechanical thresholds to baseline compared to non-stressed mice in both burn and non-burn groups. Analysis of the two mouse strains revealed that the recovery of mechanical thresholds in A/J mice which display higher levels of baseline anxiety was shorter than C57Bl/6 mice. No differences were observed regarding thermal sensitivities between strains. Our results support the view that stress exposure prior to burn injury affects mechanical and thermal thresholds and may be relevant to as a risk factor for the transition from acute to chronic pain. Finally, genetic differences may play a key role in modality-specific recovery following burn injury.

Learn More >

Sexually Dimorphic Role of Toll-like Receptor 4 (TLR4) in High Molecular Weight Hyaluronan (HMWH)-induced Anti-hyperalgesia.

High molecular weight hyaluronan (HMWH), a prominent component of the extracellular matrix binds to and signals via multiple receptors, including cluster of differentiation 44 (CD44), and toll-like receptor 4 (TLR4). We tested the hypothesis that, in the setting of inflammation, HMWH acts at TLR4 to attenuate hyperalgesia. We found that the attenuation of prostaglandin E (PGE)-induced hyperalgesia by HMWH was attenuated by a TLR4 antagonist (NBP2-26245), but only in male and ovariectomized female rats. In this study we sought to evaluated the role of the TLR4 signaling pathway in anti-hyperalgesia induced by HMWH in male rats. Decreasing expression of TLR4 in nociceptors, by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to TLR4 mRNA, also attenuated HMWH-induced anti-hyperalgesia, in male and ovariectomized female rats. Estrogen replacement in ovariectomized females reconstituted the gonad-intact phenotype. The administration of an inhibitor of myeloid differentiation factor 88 (MyD88), a TLR4 second messenger, attenuated HMWH-induced anti-hyperalgesia, while an inhibitor of the MyD88-independent TLR4 signaling pathway did not. Since it has previously been shown that HMWH-induced anti-hyperalgesia is also mediated, in part by CD44 we evaluated the effect of the combination of ODN antisense to TLR4 and CD44 mRNA. This treatment completely reversed HMWH-induced anti-hyperalgesia in male rats. Our results demonstrate a sex hormone-dependent, sexually dimorphic involvement of TLR4 in HMWH-induced anti-hyperalgesia, that is MyD88 dependent. PERSPECTIVE: The role of TLR4 in anti-hyperalgesia induced by HMWH is a sexually dimorphic, TLR4 dependent inhibition of inflammatory hyperalgesia that provides a novel molecular target for the treatment of inflammatory pain.

Learn More >

Preclinical Studies on Nalfurafine (TRK-820), a Clinically Used KOR Agonist.

Nalfurafine has been used clinically in Japan for treatment of itch in kidney dialysis patients and in patients with chronic liver diseases. A one-year post-marketing study showed nalfurafine to be safe and efficacious without producing side effects of typical KOR agonists such as anhedonia and psychotomimesis. In this chapter, we summarize in vitro characterization and in vivo preclinical studies on nalfurafine. In vitro, nalfurafine is a highly potent and moderately selective KOR full agonist; however, whether it is a biased KOR agonist is a matter of debate. In animals, nalfurafine produced anti-pruritic effects in a dose range lower than that caused side effects, including conditioned place aversion (CPA), hypolocomotion, motor incoordination, consistent with the human data. In addition, nalfurafine showed antinociceptive effects in several pain models at doses that did not cause the side effects mentioned above. It appears to be effective against inflammatory pain and mechanical pain, but less so against thermal pain, particularly high-intensity thermal pain. U50,488H and nalfurafine differentially modulated several signaling pathways in a brain region-specific manners. Notably, U50,488H, but not nalfurafine, activated the mTOR pathway, which contributed to U50,488H-induced CPA. Because of its lack of side effects associated with typical KOR agonists, nalfurafine has been investigated as a combination therapy with an MOR ligand for pain treatment and for its effects on opioid use disorder and alcohol use disorder, and results indicate potential usefulness for these indications. Thus, although in vitro data regarding uniqueness of nalfurafine in terms of signaling at the KOR are somewhat equivocal, in vivo results support the assertion that nalfurafine is an atypical KOR agonist with a significantly improved side-effect profile relative to typical KOR agonists.

Learn More >

Novel approach to modeling high-frequency activity data to assess therapeutic effects of analgesics in chronic pain conditions.

Osteoarthritis (OA) is a chronic condition often associated with pain, affecting approximately fourteen percent of the population, and increasing in prevalence. A globally aging population have made treating OA-associated pain as well as maintaining mobility and activity a public health priority. OA affects all mammals, and the use of spontaneous animal models is one promising approach for improving translational pain research and the development of effective treatment strategies. Accelerometers are a common tool for collecting high-frequency activity data on animals to study the effects of treatment on pain related activity patterns. There has recently been increasing interest in their use to understand treatment effects in human pain conditions. However, activity patterns vary widely across subjects; furthermore, the effects of treatment may manifest in higher or lower activity counts or in subtler ways like changes in the frequency of certain types of activities. We use a zero inflated Poisson hidden semi-Markov model to characterize activity patterns and subsequently derive estimators of the treatment effect in terms of changes in activity levels or frequency of activity type. We demonstrate the application of our model, and its advance over traditional analysis methods, using data from a naturally occurring feline OA-associated pain model.

Learn More >

Robenacoxib shows efficacy for the treatment of chronic degenerative joint disease-associated pain in cats: a randomized and blinded pilot clinical trial.

The main objective of this pilot clinical trial was to evaluate outcome measures for the assessment of the nonsteroidal anti-inflammatory drug (NSAID) robenacoxib in cats with degenerative joint disease-associated pain (DJD-pain). Otherwise healthy cats (n = 109) with DJD-pain entered a parallel group, randomized, blinded clinical trial. Cats received placebo (P) or robenacoxib (R) for two consecutive 3-week periods. Treatment groups were PP, RR, and RP. Actimetry and owner-assessment data were collected. Data were analyzed using mixed-effects and generalized mixed-effects linear models. Activity data showed high within-cat and between-cat variability, and 82.4% of the values were zero. Compared to placebo, mean total activity was higher (5.7%) in robenacoxib-treated cats (p = 0.24); for the 80th percentile of activity, more robenacoxib-treated cats had a > 10% increase in activity after 3 (p = 0.046) and 6 weeks (p = 0.026). Robenacoxib treatment significantly decreased owner-assessed disability, (p = 0.01; 49% reduction in disability; effect size ~ 0.3), and improved temperament (p = 0.0039) and happiness (p = 0.021) after 6 weeks. More robenacoxib-treated cats were successes at 6 weeks (p = 0.018; NNT: 3.8). Adverse effect frequencies were similar across groups. Results identified suitable endpoints for confirmatory studies, while also indicating efficacy of robenacoxib in cats with DJD-pain.

Learn More >

Search