I am a
Home I AM A Search Login

Animal Studies

Share this

Assessment of the Anti-Allodynic and Anti-Hyperalgesic Efficacy of a Glycine Transporter 2 Inhibitor Relative to Pregabalin, Duloxetine and Indomethacin in a Rat Model of Cisplatin-Induced Peripheral Neuropathy.

Cisplatin, which is a chemotherapy drug listed on the World Health Organisation's List of Essential Medicines, commonly induces dose-limiting side effects including chemotherapy-induced peripheral neuropathy (CIPN) that has a major negative impact on quality of life in cancer survivors. Although adjuvant drugs including anticonvulsants and antidepressants are used for the relief of CIPN, analgesia is often unsatisfactory. Herein, we used a rat model of CIPN (cisplatin) to assess the effect of a glycine transporter 2 (GlyT2) inhibitor, relative to pregabalin, duloxetine, indomethacin and vehicle. Male Sprague-Dawley rats with cisplatin-induced mechanical allodynia and mechanical hyperalgesia in the bilateral hindpaws received oral bolus doses of the GlyT2 inhibitor (3-30 mg/kg), pregabalin (3-100 mg/kg), duloxetine (3-100 mg/kg), indomethacin (1-10 mg/kg) or vehicle. The GlyT2 inhibitor alleviated both mechanical allodynia and hyperalgesia in the bilateral hindpaws at a dose of 10 mg/kg, but not at higher or lower doses. Pregabalin and indomethacin induced dose-dependent relief of mechanical allodynia but duloxetine lacked efficacy. Pregabalin and duloxetine alleviated mechanical hyperalgesia in the bilateral hindpaws while indomethacin lacked efficacy. The mechanism underpinning pain relief induced by the GlyT2 inhibitor at 10 mg/kg is likely due to increased glycinergic inhibition in the lumbar spinal cord, although the bell-shaped dose-response curve warrants further translational considerations.

Learn More >

Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors.

The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia.

Learn More >

Sensory Neuron TLR4 mediates the development of nerve-injury induced mechanical hypersensitivity in female mice.

Recent studies have brought to light the necessity to discern sex-specific differences in various pain states and different cell-types that mediate these differences. These studies have uncovered the role of neuroimmune interactions to mediate pain states in a sex-specific fashion. While investigating immune function in pain development, we discovered that females utilize immune components of sensory neurons to mediate neuropathic pain development. We utilized two novel transgenic mouse models that eitherrestore expression of toll-like receptor (TLR) 4 inNa1.8 nociceptors on a TLR4-null background (TLR4) or remove TLR4 specifically from Na1.8 nociceptors (TLR4). After spared nerve injury (SNI), a model of neuropathic injury, we observed a robust female-specific onset of mechanical hypersensitivity in our transgenic animals. Female Na1.8-TLR4 knockout animals were less mechanically sensitive than cre-negative TLR4 littermates. Conversely, female Na1.8-TLR4 reactivated animals were as mechanically sensitive as their wild-type counterparts. These sex and cell-specific effects were not recapitulated in male animals of either strain. Additionally, we find the danger associated molecular pattern, high mobility group box-1 (HGMB1), a potent TLR4 agonist, localization and ATF3 expression in females is dependent on TLR4 expression in dorsal root ganglia (DRG) populations following SNI. These experiments provide novel evidence toward sensory neuron specific modulation of pain in a sex-dependent manner.

Learn More >

Responses of cutaneous C-fiber afferents and spinal microglia after hindlimb cast immobilization in rats.

Previous studies have shown that persistent limb immobilization using a cast increases nociceptive behavior to somatic stimuli in rats. However, the peripheral neural mechanisms of nociception remain unclear. Using single-fiber electrophysiological recordings in vitro, we examined the general characteristics of cutaneous C-fiber afferents in the saphenous nerve and their responsiveness to mechanical and heat stimuli in a rat model of immobilization-induced pain by subjecting the rats to hindlimb cast immobilization for 4 weeks. The mechanical response of C-fibers appeared to increase in the model; however, statistical analysis revealed that neither the response threshold nor the response magnitude was altered. The general characteristics and heat responses of the C-fibers were not altered. The number of microglia and cell diameters significantly increased in the superficial dorsal horn of the lumbar spinal cord. Thus, activated microglia-mediated spinal mechanisms are associated with the induction of nociceptive hypersensitivity in rats after persistent cast immobilization.

Learn More >

Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain.

The rising opioid crisis has become a worldwide societal and public health burden, resulting from the abuse of prescription opioids. Targeting the κ-opioid receptor (KOR) in the periphery has emerged as a powerful approach to develop novel pain medications without central side effects. Inspired by the traditional use of sunflower () preparations for analgesic purposes, we developed novel stabilized KOR ligands (termed as helianorphins) by incorporating different dynorphin A sequence fragments into a cyclic sunflower peptide scaffold. As a result, helianorphin-19 selectively bound to and fully activated the KOR with nanomolar potency. Importantly, helianorphin-19 exhibited strong KOR-specific peripheral analgesic activity in a mouse model of chronic visceral pain, without inducing unwanted central effects on motor coordination/sedation. Our study provides a proof of principle that cyclic peptides from plants may be used as templates to develop potent and stable peptide analgesics applicable via enteric administration by targeting the peripheral KOR for the treatment of chronic abdominal pain.

Learn More >

A selective adenylyl cyclase 1 inhibitor relieves pain without causing tolerance.

Learn More >

IL4-10 Fusion Protein Shows DMOAD Activity in a Rat Osteoarthritis Model.

Ideally, disease-modifying osteoarthritis (OA) drugs (DMOAD) should combine chondroprotective, anti-inflammatory, and analgesic effects in a single molecule. A fusion protein of interleukin-4 (IL-4) and IL-10 (IL4-10 FP) possesses these combined effects. In this study, the DMOAD activity of rat IL4-10 FP (rIL4-10 FP) was tested in a rat model of surgically induced OA under metabolic dysregulation.

Learn More >

Site selective C-H functionalization of Mitragyna alkaloids reveals a molecular switch for tuning opioid receptor signaling efficacy.

Mitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material "kratom", which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We have developed a synthetic method for selective functionalization of the unexplored C11 position of the MG scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy. 7-Hydroxymitragynine (7OH), the parent compound with low efficacy on par with buprenorphine, is transformed to an even lower efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and in vivo in mouse analgesia tests. Low efficacy opioid agonists are of high interest as candidates for generating safer opioid medications with mitigated adverse effects.

Learn More >

Extracellular matrix protein laminin β1 regulates pain sensitivity and anxiodepression-like behaviors in mice.

Patients with neuropathic pain often experience comorbid psychiatric disorders. Cellular plasticity in the anterior cingulate cortex (ACC) is assumed as a critical interface for pain perception and emotion. However, substantial efforts thus far are focused on intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Laminin is a key element of extracellular matrix (ECM) consisting of one α-, β- and γ-chain and implicated in several pathophysiological processes. Here we showed that Laminin β1 (LAMB1) in ACC is significantly downregulated upon peripheral neuropathy. Knocking down ACC LAMB1 exacerbated pain sensitivity and induced anxiety and depression. Mechanistic analysis revealed that loss of LAMB1 causes actin dysregulation via interaction with integrin beta1 and subsequent Src-dependent RhoA/LIMK/cofilin pathway, leading to increased presynaptic transmitter release probability and abnormal postsynaptic spine remodeling, which in turn orchestrates structural and functional plasticity of pyramidal neurons and eventually results in pain hypersensitivity and anxiodepression. This study shed new light on the functional capability of ECM, LAMB1 in modulating pain plasticity and revealed a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified cingulate LAMB1/integrin β1 as a promising therapeutic strategy for treatment of neuropathic pain and associated anxiodepression.

Learn More >

Opioid antagonism reduces wanting by strengthening frontostriatal connectivity.

Learn More >

Search