I am a
Home I AM A Search Login

Animal Studies

Share this

The Development of Mechanical Allodynia in Diabetic Rats Revealed by Single-Cell RNA-Seq.

Mechanical allodynia (MA) is the main reason that patients with diabetic peripheral neuropathy (DPN) seek medical advice. It severely debilitates the quality of life. Investigating hyperglycemia-induced changes in neural transcription could provide fundamental insights into the complex pathogenesis of painful DPN (PDPN). Gene expression profiles of physiological dorsal root ganglia (DRG) have been studied. However, the transcriptomic changes in DRG neurons in PDPN remain largely unexplored. In this study, by single-cell RNA sequencing on dissociated rat DRG, we identified five physiological neuron types and a novel neuron type MAAC ( ) in PDPN. The novel neuron type originated from peptidergic neuron cluster and was characterized by highly expressing genes related to neurofilament and cytoskeleton. Based on the inferred gene regulatory networks, we found that activated transcription factors and in MAAC could enhance expression. Moreover, we constructed the cellular communication network of MAAC and revealed its receptor-ligand pairs for transmitting signals with other cells. Our molecular investigation at single-cell resolution advances the understanding of the dynamic peripheral neuron changes and underlying molecular mechanisms during the development of PDPN.

Learn More >

Red Nucleus Interleukin-6 Evokes Tactile Allodynia in Male Rats Through Modulating Spinal Pro-inflammatory and Anti-inflammatory Cytokines.

Our previous studies have clarified that red nucleus (RN) interleukin (IL)-6 is involved in the maintenance of neuropathic pain and produces a facilitatory effect by activating JAK2/STAT3 and ERK pathways. In this study, we further explored the immune molecular mechanisms of rubral IL-6-mediated descending facilitation at the spinal cord level. IL-6-evoked tactile allodynia was established by injecting recombinant IL-6 into the unilateral RN of naive male rats. Following intrarubral administration of IL-6, obvious tactile allodynia was evoked in the contralateral hindpaw of rats. Meanwhile, the expressions of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were elevated in the contralateral spinal dorsal horn (L4-L6), blocking spinal TNF-α, IL-1β, or IL-6 with neutralizing antibodies relieved IL-6-evoked tactile allodynia. Conversely, the levels of anti-inflammatory cytokines transforming growth factor-β (TGF-β) and IL-10 were reduced in the contralateral spinal dorsal horn (L4-L6), an intrathecal supplement of exogenous TGF-β, or IL-10 attenuated IL-6-evoked tactile allodynia. Further studies demonstrated that intrarubral pretreatment with JAK2/STAT3 inhibitor AG490 suppressed the elevations of spinal TNF-α, IL-1β, and IL-6 and promoted the expressions of TGF-β and IL-10 in IL-6-evoked tactile allodynia rats. However, intrarubral pretreatment with ERK inhibitor PD98059 only restrained the increase in spinal TNF-α and enhanced the expression of spinal IL-10. These findings imply that rubral IL-6 plays descending facilitation and produces algesic effect through upregulating the expressions of spinal pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 and downregulating the expressions of spinal anti-inflammatory cytokines TGF-β and IL-10 by activating JAK2/STAT3 and/or ERK pathways, which provides potential therapeutic targets for the treatment of pathological pain.

Learn More >

Dual Sigma-1 receptor antagonists and hydrogen sulfide-releasing compounds for pain treatment: Design, synthesis, and pharmacological evaluation.

The development of σ receptor antagonists hybridized with a HS-donor is here reported. We aimed to obtain improved analgesic effects when compared to σ receptor antagonists or HS-donors alone. In an in vivo model of sensory hypersensitivity, thioamide 1a induced analgesia which was synergistically enhanced when associated with the σ receptor antagonist BD-1063. The selective σ receptor agonist PRE-084 completely reversed this effect. Four thioamide HS-σ receptor hybrids (5a-8a) and their amide derivatives (5b-8b) were synthesized. Compound 7a (AD164) robustly released HS and showed selectivity for σ receptor over σ and opioid receptors. This compound induced marked analgesia that was reversed by PRE-084. The amide analogue 7b (AD163) showed only minimal analgesia. Further studies showed that 7a exhibited negligible acute toxicity, together with a favorable pharmacokinetic profile. To the best of our knowledge, compound 7a is the first dual-acting ligand with simultaneous HS-release and σ antagonistic activities.

Learn More >

models for investigating itch.

Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, models offer a chance to investigate otherwise inaccessible specific cell-cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.

Learn More >

Comprehensive transcriptome profiling of urothelial cells following TNFα stimulation in an interstitial cystitis/bladder pain syndrome model.

Urothelial cells of the urinary bladder play a critical role in the development and progression of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic and debilitating inflammatory disease. Given the lack of data on the exact phenotype and function of urothelial cells in an inflammatory setting (as in IC/BPS), we performed the first in-depth characterization of these cells using RNA sequencing, qPCR, ELISA, Western blot, and immunofluorescence. After TNFα stimulation, urothelial cells in the model of IC/BPS showed marked upregulation of several proinflammatory mediators, such as SAA, C3, IFNGR1, IL1α, IL1β, IL8, IL23A, IL32, CXCL1, CXCL5, CXCL10, CXCL11, TNFAIPR, TNFRSF1B, and BIRC3, involved in processes and pathways of innate immunity, including granulocyte migration and chemotaxis, inflammatory response, and complement activation, as well as TLR-, NOD-like receptor- and NFkB-signaling pathways, suggesting their active role in shaping the local immune response of the bladder. Our study demonstrates that the TNFα-stimulated urothelial cells recapitulate key observations found in the bladders of patients with IC/BPS, underpinning their utility as a suitable model for understanding IC/BPS mechanisms and confirming the role of TNFα signaling as an important component of the associated pathology. The present study also identifies novel upregulated gene targets of TNFα in urothelial cells, including genes encoding the acute phase protein SAA, complement component C3, and the cytokine receptor IFNGR1, which could be exploited as therapeutic targets of IC/BPS. Altogether, our study provides a reference database of the phenotype of urothelial cells in an inflammatory environment that will not only increase our knowledge of their role in IC/BPS, but also advance our understanding of how urothelial cells shape tissue immunity in the bladder.

Learn More >

Nitidine Chloride Alleviates Inflammation and Cellular Senescence in Murine Osteoarthritis Through Scavenging ROS.

Osteoarthritis (OA) is one of the most common chronic musculoskeletal disorder worldwide, representing a major source of disability, pain and socioeconomic burden. Yet the effective pharmaceutical treatments applied in the clinical works are merely symptomatic management with uncertainty around their long-term safety and efficacy, namely no drugs currently are capable of modulating the biological progression of OA. Here, we identified the potent anti-inflammatory as well as anti-oxidative properties of Nitidine Chloride (NitC), a bioactive phytochemical alkaloid extracted from natural herbs, in IL-1β-treated rat articular chondrocytes (RACs), LPS-stimulated RAW 264.7 and rat osteoarthritic models . We demonstrated NitC remarkably inhibited the production of inflammatory mediators including COX2 and iNOS, suppressed the activation of MAPK and NF-κB cell signaling pathway and reduced the expression of extracellular matrix (ECM) degrading enzymes including MMP3, MMP9 and MMP13 in IL-1β-treated RACs. Several emerging bioinformatics tools were performed to predict the underlying mechanism, the result of which indicated the potential reactive oxygen species (ROS) clearance potential of NitC. Further, NitC exhibited its anti-oxidative potential through ameliorating cellular senescence in IL-1β-treated RACs and decreasing NLRP3 inflammasomes activation in LPS-stimulated RAW 264.7 scavenging ROS. Additionally, X-ray, micro-CT and other experiments demonstrated that intra-articular injection of NitC significantly alleviated the cartilage erosion, ECM degradation and subchondral alterations in OA progression. In conclusion, the present study reported the potent anti-inflammatory and anti-oxidative potential of NitC in OA biological process, providing a promising therapeutic agent for OA management.

Learn More >

LncRNA MRAK159688 facilitates morphine tolerance by promoting REST-mediated inhibition of mu opioid receptor in rats.

Morphine tolerance (MT) caused by the long-term use of morphine is a major medical problem. The molecular mechanism of morphine tolerance remains elusive. Here, we established a morphine tolerance model in rats and verified whether the long noncoding RNA (lncRNA) MRAK159688 is involved in morphine tolerance and its specific molecular mechanism. We show the significant upregulation of MRAK159688 expression in the spinal cord of morphine-tolerant rats. Overexpression of MRAK159688 by a lentivirus reduces the analgesic efficacy of morphine and induces pain behavior. Downregulation of MRAK159688 using a small interfering RNA (siRNA) attenuates the formation of morphine tolerance, partially reverses the development of morphine tolerance and alleviates morphine-induced hyperalgesia. MRAK159688 is located in the nucleus and cytoplasm of neurons, and it colocalizes with repressor element-1 silencing transcription factor (REST) in the nucleus. MRAK159688 potentiates the expression and function of REST, thereby inhibiting the expression of mu opioid receptor (MOR) and subsequently inducing morphine tolerance. Moreover, REST overexpression blocks the effects of MRAK159688 siRNA on relieving morphine tolerance. In general, chronic morphine administration-mediated upregulation of MRAK159688 in the spinal cord contributes to morphine tolerance and hyperalgesia by promoting REST-mediated inhibition of MOR. MRAK159688 downregulation may represent a novel RNA-based therapy for morphine tolerance.

Learn More >

Female rats have a different healing phenotype than males after anterior cruciate ligament rupture with no intervention.

Little is known on the sex-specific healing responses after an anterior cruciate ligament (ACL) rupture. To address this, we compared male and female Sprague-Dawley rats following non-surgical ACL rupture. Hematology, inflammation, joint swelling, range of motion, and pain-sensitivity were analyzed at various times over 31-days. Healing was assessed by histopathology and gene expression changes in the ACL remnant and adjacent joint tissues. In the first few days, males and females showed similar functional responses after rupture, despite contrasting hematology and systemic inflammatory profiles. Sex-specific differences were found in inflammatory, immune and angiogenic potential in the synovial fluid. Histopathology and increased collagen and fibronectin gene expression revealed significant tissue remodeling in both sexes. In the ACL remnant, however, Acta2 gene expression (α-SMA production) was 4-fold higher in males, with no change in females, indicating increased fibroblast-to-myofibroblast transition with higher contractile elements (stiffness) in males. Females had 80% lower Pparg expression, which further suggests reduced cellular differentiation potential in females than males. Sex differences were also apparent in the infrapatellar fat pad and articular cartilage. We conclude females and males showed different patterns of healing post-ACL rupture over 31-days, which may impact timing of reconstruction surgery, and possibly clinical outcome.

Learn More >

Transcriptomic and proteomic profiling of Na1.8-expressing mouse nociceptors.

Learn More >

Repeated psychological stress, chronic vicarious social defeat stress, evokes irritable bowel syndrome-like symptoms in mice.

Increasing evidence has demonstrated that emotional states and intestinal conditions are inter-connected in so-called "brain-gut interactions." Indeed, many psychiatric disorders are accompanied by gastrointestinal symptoms, such as the irritable bowel syndrome (IBS). However, the functional connection remains elusive, partly because there are few useful experimental animal models. Here, we focused on a highly validated animal model of stress-induced psychiatric disorders, such as depression, known as the chronic vicarious social defeat stress (cVSDS) model mice, which we prepared using exposure to repeated psychological stress, thereafter examining their intestinal conditions. In the charcoal meal test and the capsaicin-induced hyperalgesia test, cVSDS model mice showed a significantly higher intestinal transit ratio and increased visceral pain-related behaviors, respectively. These changes persisted over one month after the stress session. On the other hand, the pathological evaluations of the histological and inflammatory scores of naive and cVSDS model mice did not differ. Furthermore, keishikashakuyakuto-a kampo medicine clinically used for the treatment of IBS-normalized the intestinal motility change in cVSDS model mice. Our results indicate that cVSDS model mice present IBS-like symptoms such as chronic intestinal peristaltic changes and abdominal hyperalgesia without organic lesion. We therefore propose the cVSDS paradigm as a novel animal model of IBS with wide validity, elucidating the correlation between depressive states and intestinal abnormalities.

Learn More >

Search