I am a
Home I AM A Search Login

Animal Studies

Share this

Exploring neuronal mechanisms involved in the scratching behavior of a mouse model of allergic contact dermatitis by transcriptomics.

Allergic contact dermatitis (ACD) is a common skin condition characterized by contact hypersensitivity to allergens, accompanied with skin inflammation and a mixed itch and pain sensation. The itch and pain dramatically affects patients' quality of life. However, still little is known about the mechanisms triggering pain and itch sensations in ACD.

Learn More >

Chronic paternal morphine exposure increases sensitivity to morphine-derived pain relief in male progeny.

Parental history of opioid exposure is seldom considered when prescribing opioids for pain relief. To explore whether parental opioid exposure may affect sensitivity to morphine in offspring, we developed a "rat pain scale" with high-speed imaging, machine learning, and mathematical modeling in a multigenerational model of paternal morphine self-administration. We find that the most commonly used tool to measure mechanical sensitivity in rodents, the von Frey hair, is not painful in rats during baseline conditions. We also find that male progeny of morphine-treated sires had no baseline changes in mechanical pain sensitivity but were more sensitive to the pain-relieving effects of morphine. Using RNA sequencing across pain-relevant brain regions, we identify gene expression changes within the regulator of G protein signaling family of proteins that may underlie this multigenerational phenotype. Together, this rat pain scale revealed that paternal opioid exposure increases sensitivity to morphine's pain-relieving effects in male offspring.

Learn More >

Response of Astrocyte Subpopulations Following Spinal Cord Injury.

There is growing appreciation for astrocyte heterogeneity both across and within central nervous system (CNS) regions, as well as between intact and diseased states. Recent work identified multiple astrocyte subpopulations in mature brain. Interestingly, one subpopulation (Population C) was shown to possess significantly enhanced synaptogenic properties in vitro, as compared with other astrocyte subpopulations of adult cortex and spinal cord. Following spinal cord injury (SCI), damaged neurons lose synaptic connections with neuronal partners, resulting in persistent functional loss. We determined whether SCI induces an enhanced synaptomodulatory astrocyte phenotype by shifting toward a greater proportion of Population C cells and/or increasing expression of relevant synapse formation-associated genes within one or more astrocyte subpopulations. Using flow cytometry and RNAscope in situ hybridization, we found that astrocyte subpopulation distribution in the spinal cord did not change to a selectively synaptogenic phenotype following mouse cervical hemisection-type SCI. We also found that spinal cord astrocytes expressed synapse formation-associated genes to a similar degree across subpopulations, as well as in an unchanged manner between uninjured and SCI conditions. Finally, we confirmed these astrocyte subpopulations are also present in the human spinal cord in a similar distribution as mouse, suggesting possible conservation of spinal cord astrocyte heterogeneity across species.

Learn More >

Upregulation of RCAN1.4 in spinal dorsal horn is involved in inflammatory pain hypersensitivity.

The calcium/calmodulin-dependent protein phosphase calcineurin (CaN) regulates synaptic plasticity by controlling the phosphorylation of synaptic proteins including AMPA type glutamate receptors. The regulator of calcineurin 1 (RCAN1) is characterized as an endogenous inhibitor of CaN and its dysregulation is implicated in multiple neurological disorders. However, whether RCAN1 is engaged in nociceptive processing in the spinal dorsal horn remains unrevealed. In this study, we found that RCAN1 was predominately expressed in pain-related neurons in the superficial dorsal horn of the spinal cord. Intraplantar injection of complete Freund's adjuvant (CFA) specifically increased the total and synaptic expression of the RCAN1.4 isoform in spinal dorsal horn. The CFA-induced inflammation also caused an increased binding of RCAN1.4 to CaN. Overexpression of RCAN1.4 in spinal dorsal horn of intact mice produced both mechanical allodynia and thermal hyperalgesia, which were accompanied by increased synaptic expression and phosphorylation of GluA1 subunit. Furthermore, the siRNA-mediated knockdown of RCAN1.4 significantly attenuated the development of pain hypersensitivity, meanwhile, decreased the synaptic expression of GluA1 in mice with peripheral inflammation. These data suggested that the increased expression of RCAN1.4 contributed to the development of inflammatory pain hypersensitivity, at least in part by promoting the synaptic recruitment of GluA1-containing AMPA receptor.

Learn More >

Bradykinin induces peripheral antinociception in PGE-induced hyperalgesia in mice.

Bradykinin (BK) is an endogenous peptide involved in vascular permeability and inflammation. It has opposite effects (inducing hyperalgesia or antinociception) when administered directly in the central nervous system. The aim of this study was to evaluate whether BK may also present this dual effect when injected peripherally in a PGE-induced nociceptive pain model, as well as to investigate the possible mechanisms of action involved in this event in mice.

Learn More >

Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.

Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein-coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha () expression in female pruritogen receptor-enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.

Learn More >

Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain.

The current paradigm is that inflammatory pain passively resolves following the cessation of inflammation. Yet, in a substantial proportion of patients with inflammatory diseases, resolution of inflammation is not sufficient to resolve pain, resulting in chronic pain. Mechanistic insight into how inflammatory pain is resolved is lacking. Here, we show that macrophages actively control resolution of inflammatory pain remotely from the site of inflammation by transferring mitochondria to sensory neurons. During resolution of inflammatory pain in mice, M2-like macrophages infiltrate the dorsal root ganglia that contain the somata of sensory neurons, concurrent with the recovery of oxidative phosphorylation in sensory neurons. The resolution of pain and the transfer of mitochondria requires expression of CD200 receptor (CD200R) on macrophages and the non-canonical CD200R-ligand iSec1 on sensory neurons. Our data reveal a novel mechanism for active resolution of inflammatory pain.

Learn More >

Organic anion transporter 1 is an HDAC4-regulated mediator of nociceptive hypersensitivity in mice.

Persistent pain is sustained by maladaptive changes in gene transcription resulting in altered function of the relevant circuits; therapies are still unsatisfactory. The epigenetic mechanisms and affected genes linking nociceptive activity to transcriptional changes and pathological sensitivity are unclear. Here, we found that, among several histone deacetylases (HDACs), synaptic activity specifically affects HDAC4 in murine spinal cord dorsal horn neurons. Noxious stimuli that induce long-lasting inflammatory hypersensitivity cause nuclear export and inactivation of HDAC4. The development of inflammation-associated mechanical hypersensitivity, but neither acute nor basal sensitivity, is impaired by the expression of a constitutively nuclear localized HDAC4 mutant. Next generation RNA-sequencing revealed an HDAC4-regulated gene program comprising mediators of sensitization including the organic anion transporter OAT1, known for its renal transport function. Using pharmacological and molecular tools to modulate OAT1 activity or expression, we causally link OAT1 to persistent inflammatory hypersensitivity in mice. Thus, HDAC4 is a key epigenetic regulator that translates nociceptive activity into sensitization by regulating OAT1, which is a potential target for pain-relieving therapies.

Learn More >

Effects of cluster headache preventatives on mouse hypothalamic transcriptional homeostasis.

To investigate how cluster headache preventatives verapamil, lithium and prednisone affect expression of hypothalamic genes involved in chronobiology.

Learn More >

Zcchc12-containing nociceptors are required for noxious heat sensation.

Dorsal root ganglion (DRG) neurons are classified into distinct types to mediate the somatosensation with different modalities. Recently, transcriptional profilings of DRG neurons by single-cell RNA-sequencing have provided new insights into the neuron typing and functional properties. Zinc-finger CCHC domain-containing 12 (Zcchc12) was reported to be the representative marker for a subtype of Gal-positive (Gal) DRG neurons. However, the characteristics and functions of Zcchc12 neurons are largely unknown. Here, we genetically labelled Zcchc12 neurons in Zcchc12-CreERT2::Ai9 mice, and verified that Zcchc12 represented a new subpopulation of DRG neurons in both sexes. Zcchc12 neurons centrally innervated the superficial laminae in spinal dorsal horn, and peripherally terminated as free nerve endings in the epidermis and cluster-shaped fibers in the dermis of footpads and nearby. Besides, Zcchc12 neurons also formed circumferential endings surround the hair follicles in hairy skin. Functionally, calcium imaging in DRGs revealed that Zcchc12 neurons were polymodal nociceptors and could be activated by mechanical and noxious thermal stimuli. Behavioral tests showed that selective ablation of Zcchc12 DRG neurons reduced the sensitivity to noxious heat in mice. Taken together, we identify a new subpopulation of Zcchc12 nociceptors essential for noxious heat sensation.Zcchc12 represents a new subpopulation of DRG neurons. The characteristics and functions of Zcchc12 neurons are largely unknown. Here we genetically labelled Zcchc12 neurons, and showed that the fibers of Zcchc12 DRG neurons projected to superficial lamina at spinal dorsal horn, and innervated skin as free nerve endings in the epidermis and cluster-shaped fibers in the dermis of footpads and nearby. Functionally, Zcchc12 DRG neurons responded to noxious mechanical and heat stimuli. Ablation of Zcchc12 DRG neurons impaired the sensation of noxious heat in mice. Therefore, we identify a new subpopulatipn of DRG neurons required for noxious heat sensation.

Learn More >

Search