I am a
Home I AM A Search Login

Animal Studies

Share this

The role of free fatty acid receptor pathways in a selective regulation of TRPA1 and TRPV1 by resolvins in primary sensory neurons.

Transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1, respectively) channels contribute to inflammatory and neuropathic pain, indicating that their pharmacological inhibition could be a novel strategy for treating painful diseases. However, the mechanisms of TRPA1/V1 channel modulation have been mostly characterized to be upregulation and sensitization via variety of exogenous stimuli, endogenous inflammatory mediators, and metabolites of oxidative stress. Here we used calcium imaging of dorsal root ganglion neurons to identify an inhibitor signaling pathway for TRPA1 and TRPV1 regulated by resolvins (RvD1 and RvE1), which are endogenous anti-inflammatory lipid mediators. TRPA1 and TRPV1 channel activations were evoked by the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. Our results show that RvD1-induced selective inhibition of TRPA1 activity was mediated by free fatty acid receptor 4 (FFAR4)-protein kinase C (PKC) signaling. Experiments assessing RvE1-induced TRPV1 inhibition showed that RvE1 actions required both FFAR1 and FFAR4. Combined stimulation of FFAR1/FFAR4 or FFAR1/PKC mimicked TRPV1 inhibition by RvE1, and these effects were blocked by a protein kinase D (PKD) inhibitor, implying that PKD is an effector of the FFAR/PKC signaling axis in RvE1-induced TRPV1 inhibition. Despite selective inhibition of TRPV1 in the nanomolar range of RvE1, higher concentrations of RvE1 also inhibited TRPA1, possibly through PKC. Collectively, our findings reveal FFAR1 and FFAR4 as key signaling pathways mediating the selective targeting of resolvins to regulate TRPA1 and TRPV1, elucidating endogenous analgesic mechanisms that could be exploited as potential therapeutic targets.

Learn More >

Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala.

Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1β (IL-1β) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary β-subunit of GlyR (βGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1β in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1β (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception.

Learn More >

A nerve injury-specific long noncoding RNA promotes neuropathic pain by increasing Ccl2 expression.

Maladaptive changes of nerve injury-associated genes in dorsal root ganglia (DRGs) are critical for neuropathic pain genesis. Emerging evidence supports the role of long noncoding RNAs (lncRNAs) in regulating gene transcription. Here we identified a conserved lncRNA, named nerve injury-specific lncRNA (NIS-lncRNA) for its upregulation in injured DRGs exclusively in response to nerve injury. This upregulation was triggered by nerve injury-induced increase in DRG ELF1, a transcription factor that bound to the NIS-lncRNA promoter. Blocking this upregulation attenuated nerve injury-induced CCL2 increase in injured DRGs and nociceptive hypersensitivity during the development and maintenance periods of neuropathic pain. Mimicking NIS-lncRNA upregulation elevated CCL2 expression, increased CCL2-mediated excitability in DRG neurons, and produced neuropathic pain symptoms. Mechanistically, NIS-lncRNA recruited more binding of the RNA-interacting protein FUS to the Ccl2 promoter and augmented Ccl2 transcription in injured DRGs. Thus, NIS-lncRNA participates in neuropathic pain likely by promoting FUS-triggered DRG Ccl2 expression and may be a potential target in neuropathic pain management.

Learn More >

Soft, bioresorbable coolers for reversible conduction block of peripheral nerves.

Implantable devices capable of targeted and reversible blocking of peripheral nerve activity may provide alternatives to opioids for treating pain. Local cooling represents an attractive means for on-demand elimination of pain signals, but traditional technologies are limited by rigid, bulky form factors; imprecise cooling; and requirements for extraction surgeries. Here, we introduce soft, bioresorbable, microfluidic devices that enable delivery of focused, minimally invasive cooling power at arbitrary depths in living tissues with real-time temperature feedback control. Construction with water-soluble, biocompatible materials leads to dissolution and bioresorption as a mechanism to eliminate unnecessary device load and risk to the patient without additional surgeries. Multiweek in vivo trials demonstrate the ability to rapidly and precisely cool peripheral nerves to provide local, on-demand analgesia in rat models for neuropathic pain.

Learn More >

Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex.

Nociception, a somatic discriminative aspect of pain, is, like touch, represented in the primary somatosensory cortex (S1), but the separation and interaction of the two modalities within S1 remain unclear. Here, we show spatially distinct tactile and nociceptive processing in the granular barrel field (BF) and adjacent dysgranular region (Dys) in mouse S1. Simultaneous recordings of the multiunit activity across subregions revealed that Dys neurons are more responsive to noxious input, whereas BF neurons prefer tactile input. At the single neuron level, nociceptive information is represented separately from the tactile information in Dys layer 2/3. In contrast, both modalities seem to converge on individual layer 5 neurons of each region, but to a different extent. Overall, these findings show layer-specific processing of nociceptive and tactile information between Dys and BF. We further demonstrated that Dys activity, but not BF activity, is critically involved in pain-like behavior. These findings provide new insights into the role of pain processing in S1.

Learn More >

IL-10 alleviates radicular pain by inhibiting TNF-α/p65 dependent Nav1.7 up-regulation in DRG neurons of rats.

Lumbar disc herniation (LDH) may induce radicular pain, the upregulation of voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) contributes to radicular pain by generating ectopic discharge of neurons, but the mechanism is unclear. Previously, we reported pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) up-regulated VGSCs in diabetic neuropathy. In this study, we explored the effect of anti-inflammatory cytokine interleukin-10 (IL-10) on radicular pain and the possible mechanisms.

Learn More >

Delivery of therapeutic carbon monoxide by gas-entrapping materials.

Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.

Learn More >

Pharmacological inactivation of the primate posterior insular/secondary somatosensory cortices attenuates thermal hyperalgesia.

We previously established a macaque model of central post-stroke pain (CPSP) and confirmed the involvement of increased activity of the posterior insular cortex (PIC) and secondary somatosensory cortex (SII) to somatosensory stimuli in mechanical allodynia by a combination of imaging techniques with local pharmacological inactivation. However, it is unclear whether the same intervention would be effective for thermal hyperalgesia. Therefore, using the macaque model, we examined behavioral responses to thermal stimuli following pharmacological inactivation of the PIC/SII.

Learn More >

Contribution of tetrodotoxin-resistant persistent Na currents to the excitability of C-type dural afferent neurons in rats.

Growing evidence supports the important role of persistent sodium currents (I) in the neuronal excitability of various central neurons. However, the role of tetrodotoxin-resistant (TTX-R) Na channel-mediated I in the neuronal excitability of nociceptive neurons remains poorly understood.

Learn More >

A model-specific simplification of the Mouse Grimace Scale based on the pain response of intraperitoneal CCl injections.

Despite its long establishment and applicability in mice pain detection, the Mouse Grimace Scale still seems to be underused in acute pain detection during chronic experiments. However, broadening its applicability can identify possible refinement approaches such as cumulative severity and habituation to painful stimuli. Therefore, this study focuses on two main aspects: First, five composite MGS criteria were evaluated with two independent methods (the MoBPs algorithm and a penalized least squares regression) and ranked for their relative importance. The most important variable was used in a second analysis to specifically evaluate the context of pain after an i.p. injection (intervention) in two treatment groups (CCl and oil (control)) at fixed times throughout four weeks in 24 male C57BL/6 N mice. One hour before and after each intervention, video recordings were taken, and the MGS assessment was performed. In this study, the results indicate orbital tightening as the most important criterion. In this experimental setup, a highly significant difference after treatment between week 0 and 1 was found in the CCl group, resulting in a medium-sized effect (W = 62.5, p value < 0.0001, r = 0.64). The oil group showed no significant difference (week 0 vs 1, W = 291.5, p value = 0.7875, r = 0.04). Therefore, the study showed that the pain caused by i.p. injections was only dependent on the applied substance, and no significant cumulation or habituation occurred due to the intervention. Further, the results indicated that the MGS system can be simplified.

Learn More >

Search