I am a
Home I AM A Search Login

Animal Studies

Share this

A non-canonical retina-ipRGCs-SCN-PVT visual pathway for mediating contagious itch behavior.

Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions.

Learn More >

Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain.

Central sensitization caused by spinal disinhibition is a key mechanism of mechanical allodynia in neuropathic pain. However, the molecular mechanisms underlying spinal disinhibition after nerve injury remain unclear. Here, we show in mice that spared nerve injury (SNI), which induces mechanical hypersensitivity and neuropathic pain, triggers homeostatic reduction of inhibitory outputs from dorsal horn parvalbumin-positive (PV+) interneurons onto both primary afferent terminals and excitatory interneurons. The reduction in inhibitory outputs drives hyperactivation of the spinal cord nociceptive pathway, causing mechanical hypersensitivity. We identified the retinoic acid receptor RARα, a central regulator of homeostatic plasticity, as the key molecular mediator for this synaptic disinhibition. Deletion of RARα in spinal PV+ neurons or application of an RARα antagonist in the spinal cord prevented the development of SNI-induced mechanical hypersensitivity. Our results identify RARα as a crucial molecular effector for neuropathic pain and a potential target for its treatment.

Learn More >

mTOR-neuropeptide Y signaling sensitizes nociceptors to drive neuropathic pain.

Neuropathic pain is a refractory condition that involves de novo protein synthesis in the nociceptive pathway. The mechanistic target of rapamycin (mTOR) is a master regulator of protein translation; however, mechanisms underlying its role in neuropathic pain remain elusive. Using the spared nerve injury-induced neuropathic pain model, we found that mTOR was preferentially activated in large-diameter dorsal root ganglion (DRG) neurons and spinal microglia. However, selective ablation of mTOR in DRG neurons, rather than microglia, alleviated acute neuropathic pain in mice. We showed that injury-induced mTOR activation promoted the transcriptional induction of Npy likely via signal transducer and activator of transcription 3 (STAT3) phosphorylation. NPY further acted primarily on Y2 receptors (Y2R) to enhance neuronal excitability. Peripheral replenishment of NPY reversed pain alleviation upon mTOR removal, whereas Y2R antagonists prevented pain restoration. Our findings reveal an unexpected link between mTOR and NPY/Y2R in promoting nociceptor sensitization and neuropathic pain.

Learn More >

Opening K channels induces inflammatory tolerance and prevents chronic pain.

Current treatments for chronic pain are unsatisfactory, therefore, new therapeutics are urgently needed. Our previous study indicated that K channel openers have analgesic effects, but the underlying mechanism has not been elucidated. We speculated that K channel openers might increase suppressor of cytokine signaling (SOCS)-3 expression to induce inflammatory tolerance and attenuate chronic pain. Postoperative pain was induced by plantar incision to establish a chronic pain model. Growth arrest-specific 6 (Gas6) and Axl mice were used for signaling studies. The microglia cell line BV-2 was cultured for the in vitro experiments. The K channel opener significantly attenuated incision-induced mechanical allodynia in mice associated with the upregulated expression of SOCS3. Opening K channels induced the expression of SOCS3 in the Gas6/Axl signaling pathway in microglia, inhibited incision-induced mechanical allodynia by activating the Gas6/Axl-SOCS3 signaling pathway, and induced inflammatory tolerance to relieve neuroinflammation and postoperative pain. We demonstrated that opening of the K channel opening activated Gas6/Axl/SOCS3 signaling to induce inflammatory tolerance and relievef chronic pain. We explored a new target for anti-inflammatory and analgesic effects by regulating the innate immune system and provided a theoretical basis for clinical preemptive analgesia.

Learn More >

Emodin suppresses oxaliplatin-induced neuropathic pain by inhibiting COX2/NF-κB mediated spinal inflammation.

Oxaliplatin (OXA) is a common chemotherapy drug for colorectal, gastric, and pancreatic cancers. The anticancer effect of OXA is often accompanied by neurotoxicity and acute and chronic neuropathy. The symptoms present as paresthesia and pain which adversely affect patients' quality of life. Herein, five consecutive intraperitoneal injections of OXA at a dose of 4 mg/kg were used to mimic chemotherapy. OXA administration induced mechanical allodynia, activated spinal astrocytes, and increased inflammatory response. To develop an effective therapeutic measure for OXA-induced neuropathic pain, emodin was intrathecally injected into OXA rats. Emodin developed an analgesic effect, as demonstrated by a significant increase in the paw withdrawal threshold of OXA rats. Moreover, emodin treatment reduced the pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β) which upregulated in OXA rats. Furthermore, autodock data showed four hydrogen bonds were formed between emodin and cyclooxygenase-2 (COX2), and emodin treatment decreased COX2 expression in OXA rats. Cell research further proved that emodin suppressed nuclear factor κB (NF-κB)-mediated inflammatory signal and reactive oxygen species level. Taken together, emodin reduced spinal COX2/NF-κB mediated inflammatory signal and oxidative stress in the spinal cord of OXA rats which consequently relieved OXA-induced neuropathic pain.

Learn More >

Mechanisms Underlining Inflammatory Pain Sensitivity in Mice Selected for High and Low Stress-Induced Analgesia-The Role of Endocannabinoids and Microglia.

In this work we strived to determine whether endocannabinoid system activity could account for the differences in acute inflammatory pain sensitivity in mouse lines selected for high (HA) and low (LA) swim-stress-induced analgesia (SSIA). Mice received intraplantar injections of 5% formalin and the intensity of nocifensive behaviours was scored. To assess the contribution of the endocannabinoid system, mice were intraperitoneally (i.p.) injected with rimonabant (0.3-3 mg/kg) prior to formalin. Minocycline (45 and 100 mg/kg, i.p.) was administered to investigate microglial activation. The possible involvement of the endogenous opioid system was investigated with naloxone (1 mg/kg, i.p.). Cannabinoid receptor types 1 and 2 (, ) and opioid receptor subtype (, , ) mRNA levels were quantified by qPCR in the structures of the central nociceptive circuit. Levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled with the mass spectrometry method (LC-MS/MS). In the interphase, higher pain thresholds in the HA mice correlated with increased spinal anandamide and 2-AG release and higher transcription. Downregulation of and mRNA was noted in HA and LA mice, respectively, however no differences in naloxone sensitivity were observed in either line. As opposed to the LA mice, inflammatory pain sensitivity in the HA mice in the tonic phase was attributed to enhanced microglial activation, as evidenced by enhanced and mRNA levels. To conclude, Cnr1 inhibitory signaling is one mechanism responsible for decreased pain sensitivity in HA mice in the interphase, while increased microglial activation corresponds to decreased pain thresholds in the tonic inflammatory phase.

Learn More >

RNA interference-mediated silencing of DNA methyltransferase 1 attenuates neuropathic pain by accelerating microglia M2 polarization.

DNA methyltransferase 1 (DNMT1) exerts imperative functions in neuropathic pain (NP). This study explored the action of RNA interference-mediated DNMT1 silencing in NP by regulating microglial M2 polarization.

Learn More >

Spinal orexin A attenuates opioid-induced mechanical hypersensitivity in the rat.

Repeated administration of opioid analgesics for pain treatment can produce paradoxical hyperalgesia via peripheral and/or central mechanisms. Thus, this study investigated whether spinally (centrally) administered orexin A attenuates opioid-induced hyperalgesia (OIH).

Learn More >

Major differences in transcriptional alterations in dorsal root ganglia between spinal cord injury and peripheral neuropathic pain models.

Chronic, often intractable pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain. Both PNI and SCI produce DRG neuron hyperexcitability linked to pain, but contusive SCI produces little peripheral axotomy or peripheral nerve inflammation. Thus, comparison of transcriptional signatures of DRGs across PNI and SCI models may highlight pain-associated transcriptional alterations in sensory ganglia that don't depend on peripheral axotomy or associated effects such as peripheral Wallerian degeneration. Data from our rat thoracic SCI experiments were combined with meta-analysis of published whole-DRG RNA-seq datasets from prominent rat PNI models. Striking differences were found between transcriptional responses to PNI and SCI, especially in regeneration-associated genes (RAGs) and long noncoding RNAs (lncRNAs). Many transcriptomic changes after SCI were also found after corresponding sham surgery, indicating they were caused by injury to surrounding tissue, including bone and muscle, rather than to the spinal cord itself. Another unexpected finding was of few transcriptomic similarities between rat neuropathic pain models and the only reported transcriptional analysis of human DRGs linked to neuropathic pain. These findings show that DRGs exhibit complex transcriptional responses to central and peripheral neural injury and associated tissue damage. Although only a few genes in DRG cells exhibited similar changes in expression across all the painful conditions examined here, these genes may represent a core set whose transcription in various DRG cell types is sensitive to significant bodily injury, and which may play a fundamental role in promoting neuropathic pain.

Learn More >

Antagonism of CGRP Receptor: Central and Peripheral Mechanisms and Mediators in an Animal Model of Chronic Migraine.

Calcitonin-gene-related peptide (CGRP) plays a key role in migraine pathophysiology and more specifically in the mechanisms underlying peripheral and central sensitization. Here, we explored the interaction of CGRP with other pain mediators relevant for neuronal sensitization in an animal model of chronic migraine. Male Sprague-Dawley rats were exposed to nitroglycerin (NTG, 5 mg/kg, i.p.) or vehicle co-administered with the CGRP receptor antagonist olcegepant (2 mg/kg i.p.), or its vehicle, every other day over a 9-day period. Twenty-four hours after the last injection of NTG (or vehicle), behavioral test and ex vivo analysis were performed. Olcegepant attenuated NTG-induced trigeminal hyperalgesia in the second phase of the orofacial formalin test. Interestingly, it also reduced gene expression and protein levels of CGRP, pro-inflammatory cytokines, inflammatory-associated miRNAs (miR-155-5p, miR-382-5p, and miR-34a-5p), and transient receptor potential ankyrin channels in the medulla-pons area, cervical spinal cord, and trigeminal ganglia. Similarly, olcegepant reduced the NTG-induced increase in CGRP and inflammatory cytokines in serum. The findings show that the activation of the CGRP pathway in a migraine animal model was associated to the persistent activation of inflammatory pathways, which was paralleled by a condition of hyperalgesia. These molecular events are relevant for informing us about the mechanisms underlying chronic migraine.

Learn More >

Search