I am a
Home I AM A Search Login

Rejected

Share this

Neurocysticercosis: A Rare Cause of Headache Needing Craniotomy.

Learn More >

Labor Analgesia in Brugada Syndrome and the Importance of Contingency Planning.

Brugada syndrome is an autosomal dominant disorder that affects cardiac sodium channels and predisposes patients to an increased risk of sudden cardiac death. Obstetric anesthesia management in patients with Brugada syndrome poses a challenge due to the prevalence of local anesthetic use for labor analgesia or cesarean section. However, central neuraxial techniques and local anesthetics have been used safely in parturients with this syndrome and may be offered to patients during preadmission counseling. We present the case of a primigravida who opted for further labor analgesia via a combined spinal-epidural technique. To our knowledge, this is the first case report of a lidocaine infusion administered via an epidural catheter to a laboring parturient with Brugada syndrome. We further discuss the use of local anesthetics, other medications, and central neuraxial techniques in those with Brugada syndrome to assist anesthesiologists caring for expectant mothers.

Learn More >

Electroacupuncture Reduces Anxiety Associated With Inflammatory Bowel Disease By Acting on Cannabinoid CB1 Receptors in the Ventral Hippocampus in Mice.

The therapeutic effects of electroacupuncture (EA) on the comorbidity of visceral pain and anxiety in patients with inflammatory bowel disease (IBD) is well known. It has been known that the ventral hippocampus (vHPC) and the cannabinoid type 1 receptors (CB1R) are involved in regulating anxiety and pain. Therefore, in this study, we determined whether EA reduces visceral pain and IBD-induced anxiety CB1R in the vHPC. We found that EA alleviated visceral hyperalgesia and anxiety in TNBS-treated IBD mice. EA reversed over-expression of CB1R in IBD mice and decreased the percentage of CB1R-expressed GABAergic neurons in the vHPC. Ablating CB1R of GABAergic neurons in the vHPC alleviated anxiety in TNBS-treated mice and mimicked the anxiolytic effect of EA. While ablating CB1R in glutamatergic neurons in the vHPC induced severe anxiety in wild type mice and inhibited the anxiolytic effect of EA. However, ablating CB1R in either GABAergic or glutamatergic neurons in the vHPC did not alter visceral pain. In conclusion, we found CB1R in both GABAergic neurons and glutamatergic neurons are involved in the inhibitory effect of EA on anxiety but not visceral pain in IBD mice. EA may exert anxiolytic effect downregulating CB1R in GABAergic neurons and activating CB1R in glutamatergic neurons in the vHPC, thus reducing the release of glutamate and inhibiting the anxiety circuit related to vHPC. Thus, our study provides new information about the cellular and molecular mechanisms of the therapeutic effect of EA on anxiety induced by IBD.

Learn More >

COVID-19 and the alarming rise of “black fungus” (mucormycosis) infection.

COVID-19 which first raised its deadly head in December 2019, has now engulfed the entire planet with its fire and fury. Mankind has been literally held to ransom by this micro-beast which has caused so much pain, sorrow and suffering, leaving behind scores of people dead and millions sick and gasping for air (quite literally!) The whole world is in disarray since the past 16 months, and now a new deadly superadded fungal infection has appeared in COVID-19 patients, in parts of the Indian subcontinent; namely mucormycosis, the deadly "black fungus." This persistent, unrelenting fungal infection which is relatively resistant to conventional anti-fungal treatment, sometimes requires radical, extensive surgical intervention in order to stem the spread of infection to vital organs such as the heart, brain, orbital spaces and spleen. mucormycosis has been increasingly seen to occur in COVID-19 patients who are immunocompromised and have uncontrolled diabetes mellitus as a comorbidity. Commonly seen forms of mucormycosis in COVID-19 patients include, Rhinocerebral mucormycosis and Pulmonary mucormycosis, with some patients also developing the cutaneous form, while some manifesting the more serious disseminated form of mucormycosis.

Learn More >

Implementation Science in Pediatric Critical Care – Sedation and Analgesia Practices as a Case Study.

Sedation and analgesia (SA) management is essential practice in the pediatric intensive care unit (PICU). Over the past decade, there has been significant interest in optimal SA management strategy, due to reports of the adverse effects of SA medications and their relationship to ICU delirium. We reviewed 13 studies examining SA practices in the PICU over the past decade for the purposes of reporting the study design, outcomes of interest, SA protocols used, strategies for implementation, and the patient-centered outcomes. We highlighted the paucity of evidence-base for these practices and also described the existing gaps in the intersection of implementation science (IS) and SA protocols in the PICU. Future studies would benefit from a focus on effective implementation strategies to introduce and sustain evidence-based SA protocols, as well as novel quasi-experimental study designs that will help determine their impact on relevant clinical outcomes, such as the occurrence of ICU delirium. Adoption of the available evidence-based practices into routine care in the PICU remains challenging. Using SA practice as an example, we illustrated the need for a structured approach to the implementation science in pediatric critical care. Key components of the successful adoption of evidence-based best practice include the assessment of the local context, both resources and barriers, followed by a context-specific strategy for implementation and a focus on sustainability and integration of the practice into the permanent workflow.

Learn More >

Immuno-Modulatory Effects of Intervertebral Disc Cells.

Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.

Learn More >

Abnormal Plasma Levels of Steroids and Their Ratios in Patients With Prurigo Nodularis: A Pilot Study.

It has been suggested that cortisol levels are abnormal in chronic urticaria and atopic dermatitis, but other steroids, such as dehydroepiandrosterone (DHEA) and testosterone, are still unknown, and whether these hormones affect the maintenance of skin homeostasis or the pathogenesis of skin diseases is not fully understood. Limited data are available on steroid levels in prurigo nodularis (PN)-related research, and no study has examined the association between pruritus severity and steroid levels in PN patients. This pilot study aimed to investigate the differences in the levels of five steroids combined with their ratios in plasma between PN patients and controls and to examine the associations between the biomarkers and pruritus severity. Plasma concentrations of five steroids, including cortisol, cortisone, testosterone, progesterone, and dehydroepiandrosterone (DHEA), in 36 patients with PN were compared with concentrations in thirty-six and matched healthy controls. The concentrations of steroids were quantitated using liquid chromatography-tandem mass spectrometry. The PN symptoms, including pruritus severity, pain, and life quality, were assessed with the use of the visual analog scale, prurigo score index, numerical rating scale, and verbal rating scale and dermatology life quality index scores. In comparison with controls, PN patients had lower levels of plasma cortisol and cortisone, which negatively correlated with PN symptoms. PN patients had higher levels of cortisone and testosterone to cortisol, which positively correlated with pruritus severity. Additionally, there were no significant differences in plasma concentrations of DHEA and testosterone between the two groups. We found no correlation between plasma concentrations of DHEA and testosterone and pruritus severity. This pilot study suggests that there may be abnormalities in peripheral blood levels of cortisol, and cortisone and the ratios of cortisone and testosterone to cortisol in patients with PN, and they are related to pruritus severity. The plasma concentrations of testosterone and DHEA may be not abnormal in PN patients and may not be associated with pruritus severity.

Learn More >

Comparative Study of the Sedative and Anti-nociceptive Effects of Sacrococcygeal Epidural Administration of Romifidine, Lidocaine, and Romifidine/Lidocaine in the Dromedary Camel.

In a randomized prospective study, comparative sedative and anti-nociceptive effects of epidural administration of romifidine (RO), lidocaine (LD), and a combination of romifidine-lidocaine (ROLD) in camel were evaluated. Eighteen healthy adult dromedary camels were assigned randomly to three treatment groups ( = 6), each receiving 50 μg/kg of RO, 0.30 mg/kg of LD, or a combination of both RO and LD. All treatments were expanded in 0.9% sterile normal saline solution to a final dose volume of 20 ml and administered directly into the sacrococcygeal space. After epidural injection of each treatment, the onset time, duration, anatomical extension of anti-nociception, and sedation were documented. Anti-nociception was tested at different areas using a pinprick test and artery forceps pinching at the perineum and inguinal area. RO and ROLD treatments resulted in mild to severe sedation and complete bilateral analgesia with loss of sensation in the tail, perineum, scrotum in males, vulva in females, the caudal aspect skin of the upper hind limb, and inguinal region (udder in females and the prepuce in males). The anatomic extent of anti-nociception reached the chest cranially and the footpad distally. Camels who received LD showed the shortest duration ( < 0.001) to the onset of perineal anti-nociception (3.67 ± 0.33 min) followed by those who received RO LD (4.00 ± 0.37 min) and RO (6.67 ± 0.33 min), respectively. RO and ROLD resulted in significantly ( < 0.001) longer periods of analgesia (158.33 ± 4.01 min and 165 ± 3.87 min, respectively) than LD (75.83 ± 3.27). An epidural RO and ROLD would appear to produce a very effective and acceptable anti-nociceptive effect in the perineal and inguinal regions of camels.

Learn More >

Dorsolateral prefrontal cortex sensing analgesia.

Chronic pain often has an unknown cause, and many patients with chronic pain learn to accept that their pain is incurable and pharmacologic treatments are only temporarily effective. Complementary and integrative health approaches for pain are thus in high demand. One such approach is soft touch, e.g., adhesion of pyramidal thorn patches in a pain region. The effects of patch adhesion on pain relief have been confirmed in patients with various types of pain. A recent study using near-infrared spectroscopy revealed that the dorsolateral prefrontal cortex (DLPFC), especially the left side, is likely to be inactivated in patients experiencing pain relief during patch treatment. Mindfulness meditation is another well-known complementary and integrative approach for achieving pain relief. The relation between pain relief due to mindfulness meditation and changes in brain regions, including the DLPFC, has long been examined. In the present review article, we survey the literature describing the effects of the above-mentioned complementary and integrative treatments on pain relief, and outline the important brain regions, including the DLPFC, that are involved in analgesia. We hope that the present article will provide clues to researchers who hope to advance neurosensory treatments for pain relief without medication.

Learn More >

Development and test-retest reliability of a screening tool for axial spondyloarthritis.

People with axial Spondyloarthritis (axSpA) suffer from lengthy diagnostic delays of ~7 years. The usage of screening tools to identify axSpA patients in primary care can reduce diagnostic delays by facilitating early referral to rheumatologic care. The purpose of this study was to examine the psychometric properties of a potential screening tool for patients with axSpA.

Learn More >

Search