I am a
Home I AM A Search Login

Resource

Share this

A syngeneic inoculation mouse model of endometriosis that develops multiple comorbid visceral and cutaneous pain like behaviours.

Endometriosis is a chronic and debilitating condition, commonly characterised by chronic pelvic pain (CPP) and infertility. Chronic pelvic pain can be experienced across multiple pelvic organs, with comorbidities commonly effecting the bowel, bladder, and vagina. Despite research efforts into endometriosis pathophysiology, little is known about how endometriosis induces CPP, and as such, therapeutic interventions are lacking. The aim of this study was to characterise a syngeneic mouse model of endometriosis that mimics naturally occurring retrograde menstruation, thought to precede endometriosis development in patients, and determine whether these mice exhibit signs of CPP and altered behaviour. We characterised the development of endometriosis over 10 weeks following uterine tissue inoculation, measured in vivo and ex vivo hypersensitivity to mechanical stimuli across multiple visceral organs, and assessed alterations in animal spontaneous behaviour. We confirmed that inoculated uterine horn tissue formed into endometriosis lesions throughout the peritoneal cavity, with significant growth by 8 to 10 weeks post inoculation. Additionally, we found that mice with fully developed endometriosis displayed hypersensitivity evoked by (1) vaginal distension, (2) colorectal distension, (3) bladder distension, and (4) cutaneous thermal stimulation, compared to their sham counterparts. Moreover, endometriosis mice displayed alterations in spontaneous behaviour indicative of (5) altered bladder function and (6) anxiety. This model creates a foundation for mechanistical studies into the diffuse CPP associated with endometriosis and the development of targeted therapeutic interventions to improve the quality of life of women with endometriosis.

Learn More >

Development, psychometric evaluation and cognitive debriefing of the rheumatoid arthritis symptom and impact questionnaire (RASIQ).

Rheumatoid arthritis (RA) is a chronic inflammatory disease often associated with persistent pain. There is a need for a patient-reported outcome measure (PROM) that is rooted in the patient experience and psychometrically validated. We describe the development of the Rheumatoid Arthritis Symptom and Impact Questionnaire (RASIQ), a novel PROM with potential to record key symptoms and impacts of RA with a 24-h recall period.

Learn More >

Chronic pain in the 11th revision of the International Classification of Diseases: users’ questions answered.

The upcoming 11th revision of the International Classification of Diseases (ICD-11) will include a comprehensive classification of chronic pain for the first time, which is based on the biopsychosocial definition of chronic pain. This presents a great opportunity for pain research and clinical practice. The new classification consists of seven main diagnostic categories of chronic pain, which are further divided into increasingly specific levels of diagnoses. Each diagnosis is characterized by clearly defined operationalized criteria. Future users will need to familiarize themselves with the new system and its application. The aim of the present publication is to provide users of the ICD-11 chronic pain classification with answers to frequently asked questions regarding the ICD-11 as a whole, the ICD-11 chronic pain classification, and its application to common pain syndromes. The questions compiled here reached the International Association for the Study of Pain Task Force via different routes (e.g., at conferences, by letter, or during field testing). Furthermore, the authors collected questions posted to the ICD-11 browser and contacted early users of the classification to enquire about their most frequent difficulties when applying the new diagnoses. The authors of the present publication prepared answers to these frequently asked questions. This publication intends to act as a guide for the future users of the new ICD-11 chronic pain classification, hence facilitating its implementation.

Learn More >

An Improved Assay and Tools for Measuring Mechanical Nociception in Drosophila Larvae.

Published assays for mechanical nociception in Drosophila have led to variable assessments of behavior. Here, we fabricated, for use with Drosophila larvae, customized metal nickel-titanium alloy (nitinol) filaments. These mechanical probes are similar to the von Frey filaments used in vertebrates to measure mechanical nociception. Here, we demonstrate how to make and calibrate these mechanical probes and how to generate a full behavioral dose-response from subthreshold (innocuous or non-noxious range) to suprathreshold (low to high noxious range) stimuli. To demonstrate the utility of the probes, we investigated tissue damage-induced hypersensitivity in Drosophila larvae. Mechanical allodynia (hypersensitivity to a normally innocuous mechanical stimulus) and hyperalgesia (exaggerated responsiveness to a noxious mechanical stimulus) have not yet been established in Drosophila larvae. Using mechanical probes that are normally innocuous or probes that typically elicit an aversive behavior, we found that Drosophila larvae develop mechanical hypersensitization (both allodynia and hyperalgesia) after tissue damage. Thus, the mechanical probes and assay that we illustrate here will likely be important tools to dissect the fundamental molecular/genetic mechanisms of mechanical hypersensitivity.

Learn More >

An Open Resource for Non-human Primate Optogenetics.

Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.

Learn More >

Pain Chemogenomics Knowledgebase (Pain-CKB) for Systems Pharmacology Target Mapping and PBPK Modeling Investigation of Opioid Drug-Drug Interactions.

More than 50 million adults in America suffer from chronic pain. Opioids are commonly prescribed for their effectiveness in relieving many types of pain. However, excessive prescribing of opioids can lead to abuse, addiction, and death. Non-steroidal anti-inflammatory drugs (NSAIDs), another major class of analgesic, also have many problematic side effects including headache, dizziness, vomiting, diarrhea, nausea, constipation, reduced appetite, and drowsiness. There is an urgent need for the understanding of molecular mechanisms that underlie drug abuse and addiction to aid in the design of new preventive or therapeutic agents for pain management. To facilitate pain related small-molecule signaling pathway studies and the prediction of potential therapeutic target(s) for the treatment of pain, we have constructed a comprehensive platform of pain domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated data mining computing tools. Our new computing platform describes the chemical molecules, genes, proteins, and signaling pathways involved in pain regulation. Pain-CKB is implemented with a friendly user-interface for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, and Spider Plot. Combining with other novel tools, we performed three case studies to systematically demonstrate how further studies can be conducted based on the data generated from Pain-CKB and its algorithms/tools. First, systems pharmacology target mapping was carried out for four FDA approved analgesics in order to identify the known target and predict off-targets. Subsequently, the target mapping outcomes were applied to build physiologically based pharmacokinetic (PBPK) models for acetaminophen and fentanyl to explore the drug-drug interaction (DDI) between this pair of drugs. Finally, pharmaco-analytics was conducted to explore the detailed interaction pattern of acetaminophen reactive metabolite and its hepatotoxicity target thioredoxin reductase.

Learn More >

Critical NIH Resources to Advance Therapies for Pain: Preclinical Screening Program and Phase II Human Clinical Trial Network.

Opioid-related death and overdose have now reached epidemic proportions. In response to this public health crisis, the National Institutes of Health (NIH) launched the Helping to End Addiction Long-term Initiative, or NIH HEAL Initiative, an aggressive, trans-agency effort to speed scientific solutions to stem the national opioid public health crisis. Herein, we describe two NIH HEAL Initiative programs to accelerate development of non-opioid, non-addictive pain treatments: The Preclinical Screening Platform for Pain (PSPP) and Early Phase Pain Investigation Clinical Network (EPPIC-Net). These resources are provided at no cost to investigators, whether in academia or industry and whether within the USA or internationally. Both programs consider small molecules, biologics, devices, and natural products for acute and chronic pain, including repurposed and combination drugs. Importantly, confidentiality and intellectual property are protected. The PSPP provides a rigorous platform to identify and profile non-opioid, non-addictive therapeutics for pain. Accepted assets are evaluated in in vitro functional assays to rule out opioid receptor activity and to assess abuse liability. In vivo pharmacokinetic studies measure plasma and brain exposure to guide the dose range and pretreatment times for the side effect profile, efficacy, and abuse liability. Studies are conducted in accordance with published rigor criteria. EPPIC-Net provides academic and industry investigators with expert infrastructure for phase II testing of pain therapeutics across populations and the lifespan. For assets accepted after a rigorous, objective scientific review process, EPPIC-Net provides clinical trial design, management, implementation, and analysis.

Learn More >

The Atlas of Inflammation Resolution (AIR).

Acute inflammation is a protective reaction by the immune system in response to invading pathogens or tissue damage. Ideally, the response should be localized, self-limited, and returning to homeostasis. If not resolved, acute inflammation can result in organ pathologies leading to chronic inflammatory phenotypes. Acute inflammation and inflammation resolution are complex coordinated processes, involving a number of cell types, interacting in space and time. The biomolecular complexity and the fact that several biomedical fields are involved, make a multi- and interdisciplinary approach necessary. The Atlas of Inflammation Resolution (AIR) is a web-based resource capturing an essential part of the state-of-the-art in acute inflammation and inflammation resolution research. The AIR provides an interface for users to search thousands of interactions, arranged in inter-connected multi-layers of process diagrams, covering a wide range of clinically relevant phenotypes. By mapping experimental data onto the AIR, it can be used to elucidate drug action as well as molecular mechanisms underlying different disease phenotypes. For the visualization and exploration of information, the AIR uses the Minerva platform, which is a well-established tool for the presentation of disease maps. The molecular details of the AIR are encoded using international standards. The AIR was created as a freely accessible resource, supporting research and education in the fields of acute inflammation and inflammation resolution. The AIR connects research communities, facilitates clinical decision making, and supports research scientists in the formulation and validation of hypotheses. The AIR is accessible through https://air.bio.informatik.uni-rostock.de.

Learn More >

Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture.

The neuroimaging community has shown tremendous interest in exploring the brain's spontaneous activity using functional magnetic resonance imaging (fMRI). On the contrary, the spinal cord has been largely overlooked despite its pivotal role in processing sensorimotor signals. Only a handful of studies have probed the organization of spinal resting-state fluctuations, always using static measures of connectivity. Many innovative approaches have emerged for analyzing dynamics of brain fMRI, but they have not yet been applied to the spinal cord, although they could help disentangle its functional architecture. Here, we leverage a dynamic connectivity method based on the clustering of hemodynamic-informed transients to unravel the rich dynamic organization of spinal resting-state signals. We test this approach in 19 healthy subjects, uncovering fine-grained spinal components and highlighting their neuroanatomical and physiological nature. We provide a versatile tool, the spinal innovation-driven co-activation patterns (SpiCiCAP) framework, to characterize spinal circuits during rest and task, as well as their disruption in neurological disorders.

Learn More >

A transcriptional toolbox for exploring peripheral neuro-immune interactions.

Correct communication between immune cells and peripheral neurons is crucial for the protection of our bodies. Its breakdown is observed in many common, often painful conditions, including arthritis, neuropathies and inflammatory bowel or bladder disease. Here, we have characterised the immune response in a mouse model of neuropathic pain using flow cytometry and cell-type specific RNA sequencing (RNA-seq). We found few striking sex differences, but a very persistent inflammatory response, with increased numbers of monocytes and macrophages up to 3½ months after the initial injury. This raises the question of whether the commonly used categorisation of pain into "inflammatory" and "neuropathic" is one that is mechanistically appropriate. Finally, we collated our data with other published RNA-seq datasets on neurons, macrophages and Schwann cells in naïve and nerve injury states. The result is a practical web-based tool for the transcriptional data-mining of peripheral neuroimmune interactions.

Learn More >

Search