I am a
Home I AM A Search Login

Migraine/Headache

Share this

Calcitonin Gene-Related Peptide Antagonists for the Prevention of Migraine: Highlights From Pivotal Studies and the Clinical Relevance of This New Drug Class.

To review the new drug class of calcitonin gene-related peptide antagonists (monoclonal antibodies) and their clinical relevance in migraine prophylaxis. A literature search was performed in PubMed (January 2009 to November 2019) using the terms (CGRP), , and for clinical trials and studies. Reports from human studies in English were evaluated for clinical evidence supporting pharmacology, efficacy, and adverse events. Initial pharmacokinetic and preclinical studies were excluded. In chronic and episodic migraine, prophylaxis with injections of monoclonal antibodies antagonizing CGRP reduced monthly migraine days with minimal clinically significant adverse events. In addition, there is evidence supporting efficacy in refractory migraine despite optimal prophylaxis. This is the first target-specific migraine prophylaxis treatment to show efficacy with minimal adverse effects. A higher drug cost is a barrier but is balanced by improved quality of life. Current therapies have limited efficacy and tolerability because of poor side effect profiles. CGRP antagonists represent a shift to more precise migraine treatments. Monoclonal antibodies inhibiting CGRP are effective in migraine prophylaxis with minimal adverse effects. Targeting CGRP is a novel clinical strategy in managing migraine.

Learn More >

Sumatriptan Does Not Antagonize CGRP-Induced Symptoms in Healthy Volunteers.

Previous attempts to develop a pragmatic human model for testing new anti-migraine drugs, have failed. Calcitonin gene-related peptide (CGRP) induces a mild headache in healthy volunteers and migraine-like headache in migraine patients. The induced headache must respond to already established migraine treatment for validation. Thus, the objective of the study was to test the effect of sumatriptan against CGRP-induced symptoms in an attempt to validate CGRP-induced headache as a model for drug testing.

Learn More >

EphrinB/EphB signaling contributes to the synaptic plasticity of chronic migraine through NR2B phosphorylation.

The specific mechanism of migraine chronification remains unclear. We previously demonstrated that synaptic plasticity was associated with migraine chronification. EphB receptors and their ligands, ephrinBs, are considered to be key molecules regulating the synaptic plasticity of the central nervous system. However, whether they can promote the chronification of migraine by regulating synaptic plasticity is unknown. Therefore, we investigated the role of ephrinB/EphB signaling in chronic migraine (CM). Male Sprague-Dawley rats were used to construct a chronic migraine model by dural infusion of an inflammatory soup for 7 days. We used qPCR, western blot, and immunofluorescence to detect the mRNA and protein levels of EphB2 and ephrinB2. The paw withdrawal latency and paw withdrawal threshold were measured after lateral ventricle treatment with EphB1-Fc (an inhibitor of EphB receptor). Changes in synaptic plasticity were explored by examining synaptic-associated proteins by western blot, dendritic spines of neurons by Golgi-Cox staining, and synaptic ultrastructure by transmission electron microscopy. We found that the expression of EphB2 and ephrinB2 was increased in CM. The administration of EphB1-Fc relieved hyperalgesia and changes in synaptic plasticity induced by CM. In addition, EphB1-Fc inhibited the upregulation of NR2B phosphorylation. These results indicate that ephrinB/EphB signaling may regulate synaptic plasticity in CM via NR2B phosphorylation, which suggests the novel idea that ephrinB/EphB signaling may be a target for the treatment of migraine chronification.

Learn More >

Craniofacial Autonomic Dysfunction in Migraine: Implications for Treatment and Prognosis.

Craniofacial autonomic signs and symptoms (CASS) are relatively underrecognized in the evaluation of migraine headache. Yet, these features provide insight into diagnostic criterion, therapeutic approaches, and overarching disease burden.

Learn More >

Parabrachial complex processes dura inputs through a direct trigeminal ganglion-to-parabrachial connection.

Migraines cause significant disability and contribute heavily to healthcare costs. Irritation of the meninges' outermost layer (the dura mater), and trigeminal ganglion activation contribute to migraine initiation. Maladaptive changes in central pain-processing regions are also important in maintaining pain. The parabrachial complex (PB) is a central region that mediates chronic pain. PB receives diverse sensory information, including a direct input from the trigeminal ganglion. We hypothesized that PB processes inputs from the dura. Using electrophysiology recordings from single units in anesthetized rats we identified 58 neurons in lateral PB that respond reliably and with short latency to electrical dura stimulation. After injecting tracer into PB, anatomical examination reveals retrogradely labeled cell bodies in the trigeminal ganglion. Neuroanatomical tract-tracing revealed a population of neurons in the trigeminal ganglion that innervate the dura and project directly to PB. These findings indicate that PB is strategically placed to process dura inputs and suggest that it is directly involved in the pathogenesis of migraine headaches.

Learn More >

Trial of Galcanezumab in Prevention of Episodic Cluster Headache.

Episodic cluster headache is a disabling neurologic disorder that is characterized by daily headache attacks that occur over periods of weeks or months. Galcanezumab, a humanized monoclonal antibody to calcitonin gene-related peptide, may be a preventive treatment for cluster headache.

Learn More >

Higher burden of rare frameshift indels in genes related to synaptic transmission separate familial hemiplegic migraine from common types of migraine.

Familial hemiplegic migraine (FHM) is a rare form of migraine with aura that often has an autosomal dominant mode of inheritance. Rare mutations in the , and genes can all cause FHM revealing genetic heterogeneity in the disorder. Furthermore, only a small subset of the affected individuals has a causal mutation. We set out to investigate what differentiates patients with FHM with no mutation in any known FHM gene from patients with common types of migraine in both familial and sporadic cases.

Learn More >

Use of Amitriptyline in the Treatment of Headache After Traumatic Brain Injury: Lessons Learned From a Clinical Trial.

The primary outcome of this study was to assess the efficacy and safety of preventive treatment with amitriptyline on headache frequency and severity after mild traumatic brain injury (mTBI).

Learn More >

Long-Term Safety Evaluation of Ubrogepant for the Acute Treatment of Migraine: Phase 3, Randomized, 52-Week Extension Trial.

To evaluate the long-term safety and tolerability of ubrogepant for the acute treatment of migraine.

Learn More >

Investigation on how dynamic effective connectivity patterns encode the fluctuating pain intensity in chronic migraine.

Chronic migraine is characterised by persistent headaches for >15 days per month; the intensity of the pain is fluctuating over time. Here, we explored the dynamic interplay of connectivity patterns between regions known to be related to pain processing and their relation to the ongoing dynamic pain experience. We recorded EEG from 80 sessions (20 chronic migraine patients in 4 separate sessions of 25 min). The patients were asked to continuously rate the intensity of their endogenous headache. On different time-windows, a dynamic causal model (DCM) of cross spectral responses was inverted to estimate connectivity strengths. For each patient and session, the evolving dynamics of effective connectivity were related to pain intensities and to pain intensity changes by using a Bayesian linear model. Hierarchical Bayesian modelling was further used to examine which connectivity-pain relations are consistent across sessions and across patients. The results reflect the multi-facetted clinical picture of the disease. Across all sessions, each patient with chronic migraine exhibited a distinct pattern of pain intensity-related cortical connectivity. The diversity of the individual findings are accompanied by inconsistent relations between the connectivity parameters and pain intensity or pain intensity changes at group level. This suggests a rejection of the idea of a common neuronal core problem for chronic migraine.

Learn More >

Search