I am a
Home I AM A Search Login

Migraine/Headache

Share this

Effects of Lasmiditan on Cardiovascular Parameters and Pharmacokinetics in Healthy Subjects Receiving Oral Doses of Propranolol.

Lasmiditan (LY573144/COL-144) is a high-affinity, centrally penetrant, selective 5-HT receptor agonist currently under investigation for acute treatment of migraine. Although lasmiditan is not known to induce vasoconstriction, it remains important to understand its effect on cardiovascular parameters because it is likely to be coadministered with β-adrenergic receptor antagonists used for migraine prophylaxis, such as propranolol. This phase 1, single-center, open-label, fixed-sequence study evaluated the cardiovascular and pharmacokinetic effects of 200 mg lasmiditan in 44 healthy subjects receiving repeated oral doses of twice-daily 80 mg propranolol under fasting conditions. Coadministration caused statistically significant decreases in mean hourly heart rate relative to propranolol alone, but the maximum magnitude of this effect was -6.5 bpm and recovered to predose levels by 3 to 4 hours before stabilizing. Additionally, short-lived (≤2.5 hours) statistically significant increases in systolic blood pressure (8.3 mm Hg) and diastolic blood pressure (6.4 mm Hg) were observed following coadministration. Consistent with the largely nonoverlapping metabolic pathways of lasmiditan and propranolol, exposure to either drug was not affected by coadministration. Overall, compared with administration of either drug alone, coadministration was generally well tolerated.

Learn More >

Celecoxib reduces CSD-induced macrophage activation and dilatation of dural but not pial arteries in rodents: implications for mechanism of action in terminating migraine attacks.

Non-steroidal anti-inflammatory drugs (NSAIDs), commonly known as COX-1/COX-2 inhibitors, can be effective in treating mild to moderate migraine headache. However, the mechanism by which these drugs act in migraine is not known, nor is the specific contribution of COX-1 versus COX-2 known. We sought to investigate these unknowns using celecoxib, which selectively inhibits the enzymatic activity of COX-2, by determining its effects on several migraine-associated vascular and inflammatory events. Using in vivo two-photon microscopy, we determined intraperitoneal celecoxib effects on CSD-induced blood vessel responses, plasma protein extravasation, and immune cell activation in the dura and pia of mice and rats. Compared to vehicle (control group), celecoxib reduced significantly CSD-induced dilatation of dural arteries and activation of dural and pial macrophages but not dilatation or constriction of pial arteries and veins, or the occurrence of plasma protein extravasation. Collectively, these findings suggest that a mechanism by which celecoxib-mediated COX-2 inhibition might ease the intensity of migraine headache and potentially terminate an attack is by attenuating dural macrophages activation and arterial dilatation outside the blood brain barrier (BBB), and pial macrophages activation inside the BBB.

Learn More >

Psychological therapies for the prevention of migraine in adults.

Migraine is a common neurological problem associated with the highest burden amongst neurological conditions in terms of years lived with disability. Medications can be used as prophylaxis or rescue medicines, but are costly and not always effective. A range of psychological interventions have been developed to manage migraine.

Learn More >

Positron emission tomography imaging of endogenous mu-opioid mechanisms during pain and migraine.

Learn More >

TRESK K Channel Activity Regulates Trigeminal Nociception and Headache.

Although TWIK-related spinal cord K (TRESK) channel is expressed in all primary afferent neurons in trigeminal ganglia (TG) and dorsal root ganglia (DRG), whether TRESK activity regulates trigeminal pain processing is still not established. Dominant-negative TRESK mutations are associated with migraine but not with other types of pain in humans, suggesting that genetic TRESK dysfunction preferentially affects the generation of trigeminal pain, especially headache. Using TRESK global knockout mice as a model system, we found that loss of TRESK in all TG neurons selectively increased the intrinsic excitability of small-diameter nociceptors, especially those that do not bind to isolectin B4 (IB4). Similarly, loss of TRESK resulted in hyper-excitation of the small IB4 dural afferent neurons but not those that bind to IB4 (IB4). Compared with wild-type littermates, both male and female TRESK knockout mice exhibited more robust trigeminal nociceptive behaviors, including headache-related behaviors; whereas their body and visceral pain responses were normal. Interestingly, neither the total persistent outward current nor the intrinsic excitability was altered in adult TRESK knockout DRG neurons, which may explain why genetic TRESK dysfunction is not associated with body and/or visceral pain in humans. We reveal for the first time that, among all primary afferent neurons, TG nociceptors are the most vulnerable to the genetic loss of TRESK. Our findings indicate that endogenous TRESK activity regulates trigeminal nociception, likely through controlling the intrinsic excitability of TG nociceptors. Importantly, we provide evidence that genetic loss of TRESK significantly increases the likelihood of developing headache. TRESK K channel is expressed in all primary afferent neurons in trigeminal ganglia (TG) and dorsal root ganglia (DRG), but dominant-negative TRESK mutations are only associated with migraine but not with other types of pain in humans. In TRESK global knockout mice, we found that ubiquitous loss of TRESK selectively increased the intrinsic excitability of small-diameter TG nociceptors without affecting DRG neuronal excitability. Compared with wild-type littermates, TRESK knockout mice exhibited more robust trigeminal pain, especially headache-related behaviors; whereas their body and visceral pain responses were normal. This recapitulates the clinical manifestations of human TRESK mutations. Our results indicate that endogenous TRESK activity regulates trigeminal nociception, and genetic loss of TRESK significantly increases the likelihood of developing headache.

Learn More >

Cholinergic modulation inhibits cortical spreading depression in mouse neocortex through activation of muscarinic receptors and decreased excitatory/inhibitory drive.

Cortical spreading depression (CSD) is a wave of transient network hyperexcitability leading to long lasting depolarization and block of firing, which initiates focally and slowly propagates in the cerebral cortex. It causes migraine aura and it has been implicated in the generation of migraine headache. Cortical excitability can be modulated by cholinergic actions, leading in neocortical slices to the generation of rhythmic synchronous activities (UP/DOWN states). We investigated the effect of cholinergic activation with the cholinomimetic agonist carbachol on CSD triggered with 130 mM KCl pulse injections in acute mouse neocortical brain slices, hypothesizing that the cholinergic-induced increase of cortical network excitability during UP states could facilitate CSD. We observed instead an inhibitory effect of cholinergic activation on both initiation and propagation of CSD, through the action of muscarinic receptors. In fact, carbachol-induced CSD inhibition was blocked by atropine or by the preferential M1 muscarinic antagonist telenzepine; the preferential M1 muscarinic agonist McN-A-343 inhibited CSD similarly to carbachol, and its effect was blocked by telenzepine. Recordings of spontaneous excitatory and inhibitory post-synaptic currents in pyramidal neurons showed that McN-A-343 induced overall a decrease of the excitatory/inhibitory ratio. This inhibitory action may be targeted for novel pharmacological approaches in the treatment of migraine with muscarinic agonists.

Learn More >

Mapping migraine to a common brain network.

Inconsistent findings from migraine neuroimaging studies have limited attempts to localize migraine symptomatology. Novel brain network mapping techniques offer a new approach for linking neuroimaging findings to a common neuroanatomical substrate and localizing therapeutic targets. In this study, we attempted to determine whether neuroanatomically heterogeneous neuroimaging findings of migraine localize to a common brain network. We used meta-analytic coordinates of decreased grey matter volume in migraineurs as seed regions to generate resting state functional connectivity network maps from a normative connectome (n = 1000). Network maps were overlapped to identify common regions of connectivity across all coordinates. Specificity of our findings was evaluated using a whole-brain Bayesian spatial generalized linear mixed model and a region of interest analysis with comparison groups of chronic pain and a neurologic control (Alzheimer's disease). We found that all migraine coordinates (11/11, 100%) were negatively connected (t ≥ ±7, P < 10-6 family-wise error corrected for multiple comparisons) to a single location in left extrastriate visual cortex overlying dorsal V3 and V3A subregions. More than 90% of coordinates (10/11) were also positively connected with bilateral insula and negatively connected with the hypothalamus. Bayesian spatial generalized linear mixed model whole-brain analysis identified left V3/V3A as the area with the most specific connectivity to migraine coordinates compared to control coordinates (voxel-wise probability of ≥90%). Post hoc region of interest analyses further supported the specificity of this finding (ANOVA P = 0.02; pairwise t-tests P = 0.03 and P = 0.003, respectively). In conclusion, using coordinate-based network mapping, we show that regions of grey matter volume loss in migraineurs localize to a common brain network defined by connectivity to visual cortex V3/V3A, a region previously implicated in mechanisms of cortical spreading depression in migraine. Our findings help unify migraine neuroimaging literature and offer a migraine-specific target for neuromodulatory treatment.

Learn More >

Fremanezumab and its isotype slow propagation rate and shorten cortical recovery period but do not prevent occurrence of cortical spreading depression in rats with compromised blood brain barrier.

Most centrally-acting migraine preventive drugs suppress frequency and velocity of cortical spreading depression (CSD). The purpose of the current study was to determine how the new class of peripherally acting migraine preventive drug (i.e., the anti-CGRP-mAbs) affect CSD – an established animal model of migraine aura, which affects about 1/3 of people with migraine – when allowed to cross the blood brain barrier (BBB). Using standard electrocorticogram recording techniques and rats in which the BBB was intentionally compromised, we found that when the BBB was opened, the anti-CGRP-mAb fremanezumab did not prevent the induction, occurrence or propagation of a single wave of CSD induced by a pinprick, but that both fremanezumab and its isotype were capable of slowing down the propagation velocity of CSD and shortening the period of profound depression of spontaneous cortical activity that followed the spreading depolarization. Fremanezumab's inability to completely block the occurrence of CSD in animals in which the BBB was compromised suggests that CGRP may not be involved in the initiation of CSD, at least not to the extent that it can prevent its occurrence. Similarly, we cannot conclude that CGRP is involved in the propagation velocity or the neuronal silencing period (also called cortical recovery period) that follows the CSD because similar effects were observed when the isotype was used. These finding call for caution with interpretations of studies that claim to show direct CNS effects of anti-CGRP-mAbs.

Learn More >

Parabrachial complex processes dura inputs through a direct trigeminal ganglion-to-parabrachial connection.

Migraines cause significant disability and contribute heavily to healthcare costs. Irritation of the meninges' outermost layer (the dura mater), and trigeminal ganglion activation contribute to migraine initiation. Maladaptive changes in central pain-processing regions are also important in maintaining pain. The parabrachial complex (PB) is a central region that mediates chronic pain. PB receives diverse sensory information, including a direct input from the trigeminal ganglion. We hypothesized that PB processes inputs from the dura. Using electrophysiology recordings from single units in anesthetized rats we identified 58 neurons in lateral PB that respond reliably and with short latency to electrical dura stimulation. After injecting tracer into PB, anatomical examination reveals retrogradely labeled cell bodies in the trigeminal ganglion. Neuroanatomical tract-tracing revealed a population of neurons in the trigeminal ganglion that innervate the dura and project directly to PB. These findings indicate that PB is strategically placed to process dura inputs and suggest that it is directly involved in the pathogenesis of migraine headaches.

Learn More >

Rimegepant, an Oral Calcitonin Gene-Related Peptide Receptor Antagonist, for Migraine.

Calcitonin gene-related peptide receptor has been implicated in the pathogenesis of migraine. Rimegepant is an orally administered, small-molecule, calcitonin gene-related peptide receptor antagonist that may be effective in acute migraine treatment.

Learn More >

Search