I am a
Home I AM A Search Login

PAR2 mediates itch via TRPV3 signaling in keratinocytes.

Animal studies have suggested that transient receptor potential (TRP) ion channels and G protein-coupled receptors (GPCRs) play important roles in itch transmission. TRPV3 gain-of-function mutations have been identified in patients with Olmsted syndrome which is associated with severe pruritus. However, the mechanisms causing itch remain poorly understood. Here, we show that keratinocytes lacking TRPV3 impair the function of protease activated receptor 2 (PAR2), resulting in reduced neuronal activation and scratching behavior in response to PAR2 agonists. Moreover, we show that TRPV3 and PAR2 were upregulated in skin biopsies from patients and mice with atopic dermatitis (AD), whereas their inhibition attenuated scratching and inflammatory responses in mouse AD models. Taken together, these results reveal a previously unrecognized link between TRPV3 and PAR2 in keratinocytes to convey itch information and suggest that a blockade of PAR2 or TRPV3 individually or both may serve as a potential approach for antipruritic therapy in AD.

Learn More >

One step closer to alleviating uraemic pruritus.

Learn More >

Efficacy and Safety of Multiple Dupilumab Dose Regimens After Initial Successful Treatment in Patients With Atopic Dermatitis: A Randomized Clinical Trial.

The dupilumab regimen of 300 mg every 2 weeks is approved for uncontrolled, moderate to severe atopic dermatitis (AD).

Learn More >

Interventions for chronic pruritus of unknown origin.

Pruritus is a sensation that leads to the desire to scratch; its origin is unknown in 8% to 15% of affected patients. The prevalence of chronic pruritus of unknown origin (CPUO) in individuals with generalised pruritus ranges from 3.6% to 44.5%, with highest prevalence among the elderly. When the origin of pruritus is known, its management may be straightforward if an effective treatment for the causal disease is available. Treatment of CPUO is particularly difficult due to its unknown pathophysiology.

Learn More >

Efficacy of pregabalin for the treatment of chronic pruritus of unknown origin, assessed based on electric current perception threshold.

Chronic pruritus of unknown origin (CPUO) is defined as itching lasting more than 6 weeks in the absence of discernible skin lesions. Pregabalin is used to treat patients with CPUO. In this study, we aimed to investigate differences in the perception threshold of itch sensation between patients with CPUO and healthy individuals and to evaluate the efficacy of pregabalin for CPUO. At baseline, week 2, and week 4 after treatment initiation, the visual analogue scale (VAS) score was measured to assess pruritus severity, and electric current perception threshold (CPT) was measured at 250 and 5 Hz using a NEUROMETER CPT/C stimulator. Twenty healthy individuals and 41 patients with CPUO were enrolled in this study. The patients with CPUO were categorised as those who responded to antihistamines (Antihistamine group), were not improved by antihistamines (Pregabalin group), and were not improved by antihistamines and pregabalin (Refractory group). The baseline CPT values were not significantly different between patients with CPUO and healthy control. Pruritus was improved in 7 of 10 patients in the Pregabalin group after treatment with pregabalin, showing decreased CPT at 5 Hz. The sensitive C-fibres presented a high threshold to detect itch sensation, and this sensitivity decreased in response to treatment with pregabalin.

Learn More >

Bringing on the itch.

Neutrophils are the first immune cells that enter the skin and cause itch in atopic dermatitis.

Learn More >

Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma.

The transient receptor potential (TRP) superfamily of ion channels has garnered significant attention by the pharmaceutical industry. In particular, TRP channels showing high levels of expression in sensory neurons such as TRPV1, TRPA1, and TRPM8, have been considered as targets for indications where sensory neurons play a fundamental role, such as pain, itch, and asthma. Modeling these indications in rodents is challenging, especially in mice. The rat is the preferred species for pharmacological studies in pain, itch, and asthma, but until recently, genetic manipulation of the rat has been technically challenging. Here, using CRISPR technology, we have generated a TRPA1 KO rat to enable more sophisticated modeling of pain, itch, and asthma. We present a detailed phenotyping of the TRPA1 KO rat in models of pain, itch, and asthma that have previously only been investigated in the mouse. With the exception of nociception induced by direct TRPA1 activation, we have found that the TRPA1 KO rat shows apparently normal behavioral responses in multiple models of pain and itch. Immune cell infiltration into the lung in the rat OVA model of asthma, on the other hand, appears to be dependent on TRPA1, similar to was has been observed in TRPA1 KO mice. Our hope is that the TRPA1 KO rat will become a useful tool in further studies of TRPA1 as a drug target.

Learn More >

Quantitative Characterization of the Neuropeptide Level Changes in Dorsal Horn and Dorsal Root Ganglia Regions of the Murine Itch Models.

Chronic itch can be extremely devastating and, in many cases, difficult to treat. One challenge in treating itch disorders is the limited understanding of the multitude of chemical players involved in the communication of itch sensation from the peripheral to central nervous system. Neuropeptides are intercellular signaling molecules that are known to be involved in the transmission of itch signals from primary afferent neurons, which detect itch in the skin, to higher-order circuits in the spinal cord and brain. To investigate the role neuropeptides play in transmitting itch signals, we generated two mouse models of chronic itch-Acetone-Ether-Water (AEW, dry skin) and calcipotriol (MC903, atopic dermatitis). For peptide identification and quantitation, we analyzed the peptide content of dorsal root ganglia (DRG) and dorsal horn (DH) tissues from chronically itchy mice using liquid chromatography coupled to tandem mass spectrometry. De novo-assisted database searching facilitated the identification and quantitation of 335 peptides for DH MC903, 318 for DH AEW, 266 for DRG MC903, and 271 for DRG AEW. Of these quantifiable peptides, we detected 30 that were differentially regulated in the tested models, after accounting for multiple testing correction (q<0.1). These include several peptide candidates derived from neuropeptide precursors, such as proSAAS, protachykinin-1, proenkephalin and calcitonin gene-related peptide, some of them previously linked to itch. The peptides identified in this study may help elucidate our understanding about these debilitating disorders. Data are available via ProteomeXchange with identifier PXD015949.

Learn More >

Antipruritic placebo effects by conditioning H1-antihistamine.

Allergic rhinitis symptoms can be reduced by behaviorally conditioning antihistamine. It is unclear whether these findings extend to histamine-induced itch, or work when participants are informed about the conditioning procedure (open-label conditioning). The current study aims to investigate the efficacy of (open-label) antipruritic behavioral conditioning for histamine-induced itch.

Learn More >

Activation of Different Heterodimers of TLR2 Distinctly Mediates Pain and Itch.

Toll-like receptors (TLRs) have been implicated in pain and itch regulation. TLR2, a TLR family member that detects microbial membrane components, has been implicated in pathologic pain. However, the role of TLR2 in pruritic and nociceptive responses has not been thoroughly investigated. In this study, we found that TLR2 was expressed in mouse dorsal root ganglia (DRG) and trigeminal ganglia (TG) neurons. Itch and pain behaviors, including histamine-dependent and histamine-independent acute itching, acetone/diethyl ether/water and 2,4-dinitrofluorobenzene-induced chronic itching and inflammatory pain, were largely attenuated in TLR2 knockout (KO) mice. The TLR2 agonist Pam3CSK4, which targets TLR2/1 heterodimers, evoked pain and itch behavior, whereas lipoteichoic acid (LTA) and zymosan, which recognize TLR2/6 heterodimers, produced only pain response. The TLR2 agonist-induced nociceptive and pruritic behaviors were largely diminished in transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) KO mice. Finally, Pam3Csk4 and zymosan increased the [Ca2] in DRG neurons from wild-type mice. However, the enhancement of [Ca2] was largely inhibited in the DRG neurons from TRPV1 and TRPA1 KO mice. Our results demonstrate that TLR2 is involved in different itch and pain behaviors through activating TLR1/TLR2 or TLR6/TLR2 heterodimers via TRPV1 and TRPA1 channels.

Learn More >

Search