I am a
Home I AM A Search Login

Posts

Share this

Effects of Different Opioid Drugs on Oxidative Status and Proteasome Activity in SH-SY5Y Cells.

Opioids are the most effective drugs used for the management of moderate to severe pain; however, their chronic use is often associated with numerous adverse effects. Some results indicate the involvement of oxidative stress as well as of proteasome function in the development of some opioid-related side effects including analgesic tolerance, opioid-induced hyperalgesia (OIH) and dependence. Based on the evidence, this study investigated the impact of morphine, buprenorphine or tapentadol on intracellular reactive oxygen species levels (ROS), superoxide dismutase activity/gene expression, as well as β2 and β5 subunit proteasome activity/biosynthesis in SH-SY5Y cells. Results showed that tested opioids differently altered ROS production and SOD activity/biosynthesis. Indeed, the increase in ROS production and the reduction in SOD function elicited by morphine were not shared by the other opioids. Moreover, tested drugs produced distinct changes in β2(trypsin-like) and β5(chymotrypsin-like) proteasome activity and biosynthesis. In fact, while prolonged morphine exposure significantly increased the proteolytic activity of both subunits and β5 mRNA levels, buprenorphine and tapentadol either reduced or did not alter these parameters. These results, showing different actions of the selected opioid drugs on the investigated parameters, suggest that a low µ receptor intrinsic efficacy could be related to a smaller oxidative stress and proteasome activation and could be useful to shed more light on the role of the investigated cellular processes in the occurrence of these opioid drug side effects.

Learn More >

TRPV3 and Itch: The Role of TRPV3 in Chronic Pruritus according to Clinical and Experimental Evidence.

Itching is a sensory phenomenon characterized by an unpleasant sensation that makes you want to scratch the skin, and chronic itching diminishes the quality of life. In recent studies, multiple transient receptor potential (TRP) channels present in keratinocytes or nerve endings have been shown to engage in the propagation of itch signals in chronic dermatological or pruritic conditions, such as atopic dermatitis (AD) and psoriasis (PS). TRPV3, a member of the TRP family, is highly expressed in the epidermal keratinocytes. Normal TRPV3 signaling is essential for maintaining epidermal barrier homeostasis. In recent decades, many studies have suggested that TRPV3 contributes to detecting pruritus signals. Gain-of-function mutations in TRPV3 in mice and humans are characterized by severe itching, hyperkeratosis, and elevated total IgE levels. These studies suggest that TRPV3 is an important channel for skin itching. Preclinical studies have provided evidence to support the development of TRPV3 antagonists for treating inflammatory skin conditions, itchiness, and pain. This review explores the role of TRPV3 in chronic pruritus, collating clinical and experimental evidence. We also discuss underlying cellular and molecular mechanisms and explore the potential of TRPV3 antagonists as therapeutic agents.

Learn More >

Regulation of Prepro-NeuropeptideW/B and Its Receptor in the Heart of ZDF Rats: An Animal Model of Type II DM.

Neuropeptide B (NPB) and neuropeptide W (NPW) are neuropeptides, which constitute NPB/W signaling systems together with G-protein coupled receptors NPBWR1. The location and function of NPB/W signaling systems have been predominantly detected and mapped within the CNS, including their role in the modulation of inflammatory pain, neuroendocrine functions, and autonomic nervous systems. The aim of the study is to investigate the impact of diabetes on the neuropeptide B/W signaling system in different heart compartments and neurons which innervates it. In the RT-qPCR analysis, we observed the upregulation of mRNA for preproNPB in RV, for preproNPW in LA, and for NPBWR1 in DRG in diabetic rats. On the contrary, the expression of mRNA for NPBWR1 was downregulated in LV in diabetic rats. In the WB analysis, significant downregulation of NPBWR1 in LV (0.54-fold, = 0.046) in diabetic rats was observed at the proteomic level. The presence of NPBWR1 was also confirmed in a dissected LCM section of cardiomyocytes and coronary arteries. The positive inotropic effect of NPW described on the diabetic cardiomyocytes in vitro could point to a possible therapeutic target for compensation of the contractile dysfunction in the diabetic heart. In conclusion, the NPB/W signaling system is involved in the regulation of heart functions and long-term diabetes leads to changes in the expression of individual members of this signaling system differently in each cardiac compartment, which is related to the different morphology and function of these cardiac chambers.

Learn More >

1,2,3-Triazole Derivatives as Novel Antifibrinolytic Drugs.

Fibrinolysis is a natural process that ensures blood fluidity through the removal of fibrin deposits. However, excessive fibrinolytic activity can lead to complications in different circumstances, such as general surgery or severe trauma. The current antifibrinolytic drugs in the market, aminocaproic acid (EACA) and tranexamic acid (TXA), require high doses repetitively to maintain their therapeutic effect. These high doses are related to a number of side effects such as headaches, nasal symptoms, or gastrointestinal discomfort and severely limit their use in patients with renal impairment. Therefore, the discovery of novel antifibrinolytics with a higher specificity and lower dosage could vastly improve the applicability of these drugs. Herein, we synthesized a total of ten compounds consisting of a combination of three key moieties: an oxadiazolone, a triazole, and a terminal amine. The IC of each compound was calculated in our clot lysis assays, and the best candidate () provided approximately a 2.5-fold improvement over the current gold standard, TXA. Molecular docking and molecular dynamics were used to perform a structure-activity relationship (SAR) analysis with the lysine binding site in the Kringle 1 domain of plasminogen. This analysis revealed that 1,2,3-triazole was crucial for the activity, enhancing the binding affinity through pi-pi stacking and polar interactions with Tyr72. The results presented in this work open the door to further investigate this new family as potential antifibrinolytic drugs.

Learn More >

Innate Immune System Activation, Inflammation and Corneal Wound Healing.

Corneal wounds resulting from injury, surgeries, or other intrusions not only cause pain, but also can predispose an individual to infection. While some inflammation may be beneficial to protect against microbial infection of wounds, the inflammatory process, if excessive, may delay corneal wound healing. An examination of the literature on the effect of inflammation on corneal wound healing suggests that manipulations that result in reductions in severe or chronic inflammation lead to better outcomes in terms of corneal clarity, thickness, and healing. However, some acute inflammation is necessary to allow efficient bacterial and fungal clearance and prevent corneal infection. This inflammation can be triggered by microbial components that activate the innate immune system through toll-like receptor (TLR) pathways. In particular, TLR2 and TLR4 activation leads to pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activation. Similarly, endogenous molecules released from disrupted cells, known as damage-associated molecular patterns (DAMPs), can also activate TLR2, TLR4 and NFκB, with the resultant inflammation worsening the outcome of corneal wound healing. In sterile keratitis without infection, inflammation can occur though TLRs to impact corneal wound healing and reduce corneal transparency. This review demonstrates the need for acute inflammation to prevent pathogenic infiltration, while supporting the idea that a reduction in chronic and/or excessive inflammation will allow for improved wound healing.

Learn More >

Intraarticular Injections of Mesenchymal Stem Cells in Knee Osteoarthritis: A Review of Their Current Molecular Mechanisms of Action and Their Efficacy.

More than 10% of the world's population suffers from osteoarthritis (OA) of the knee, with a lifetime risk of 45%. Current treatments for knee OA pain are as follows: weight control; oral pharmacological treatment (non-steroidal anti-inflammatory drugs, paracetamol, opioids); mechanical aids (crutches, walkers, braces, orthotics); therapeutic physical exercise; and intraarticular injections of corticosteroids, hyaluronic acid, and platelet-rich plasma (PRP). The problem is that such treatments usually relieve joint pain for only a short period of time. With respect to intraarticular injections, corticosteroids relieve pain for several weeks, while hyaluronic acid and PRP relieve pain for several months. When the above treatments fail to control knee pain, total knee arthroplasty (TKA) is usually indicated; however, although a very effective surgical technique, it can be associated with medical and postoperative (surgery-related) complications. Therefore, it seems essential to look for safe and effective alternative treatments to TKA. Recently, there has been much research on intraarticular injections of mesenchymal stem cells (MSCs) for the management of OA of the knee joint. This article reviews the latest information on the molecular mechanisms of action of MSCs and their potential therapeutic benefit in clinical practice in patients with painful knee OA. Although most recent publications claim that intraarticular injections of MSCs relieve joint pain in the short term, their efficacy remains controversial given that the existing scientific information on MSCs is indecisive. Before recommending intraarticular MSCs injections routinely in patients with painful knee OA, more studies comparing MSCs with placebo are needed. Furthermore, a standard protocol for intraarticular injections of MSCs in knee OA is needed.

Learn More >

Lack of Effect of Cenerimod, a Selective S1P Receptor Modulator, on the Pharmacokinetics of a Combined Oral Contraceptive.

Cenerimod, a sphingosine-1-phosphate 1 receptor modulator, is in development for the treatment of systemic lupus erythematosus, a disease mainly affecting women of childbearing potential. The effect of cenerimod on the pharmacokinetics (PK) of a combined oral contraceptive (COC, 100 µg levonorgestrel and 20 µg ethinylestradiol (EE)) was investigated. A randomized, double-blind, parallel-group study was performed in 24 healthy male and female subjects. A single oral dose of COC was administered alone and after 35 days of once daily (o.d.) administration of cenerimod 0.5 (n = 10) or 4 (n = 14) mg. Exposure to EE alone or in combination with cenerimod was comparable as reflected by the geometric mean ratios and the respective 90% confidence intervals, while a slight increase in exposure (approximately 10-25%) to levonorgestrel was observed at clinically relevant concentrations of cenerimod. Overall, COC alone or in combination with cenerimod was safe and well tolerated. Two subjects reported one adverse event each (one headache after COC alone, and gastroenteritis in combination with cenerimod 4 mg). In conclusion, cenerimod does not affect the PK of levonorgestrel or EE to a clinically relevant extent. Therefore, COC can be selected as method of contraception during and after cenerimod therapy without the risk of interaction.

Learn More >

A case of ureteral stenosis due to ureteritis probably associated with rheumatoid arthritis.

Ureteritis associated with immunological disorder is rarely reported, and most cases in this category are small vessel vasculitis and immunoglobulin G4 (IgG4)-related disease. Rheumatoid arthritis (RA) associated ureteritis is uncommon and underlying etiology is unclear. We present a patient of ureteritis who had medical history of RA and successfully treated with steroid and immunosuppressant. A 49-year-old woman who had been treated for rheumatoid arthritis (RA) and atopic dermatitis (AD) suffered from gross hematuria for five successive days. Contrast enhanced-computed tomography (CE-CT) showed right dominant upper urinary tract dilatation with enhanced thickened wall. The hematuria continued accompanied with intermittent right back and lower abdominal pain, and following CT image taken after three months presented the progression to bilateral hydronephrosis. Ureteral stents were placed and antibiotic therapy was introduced for obstructive pyelonephritis. Ureterocystoscopy and following biopsy from the upper ureteral tract showed chronic inflammatory change in the histopathology, and we finally considered the stenosing ureteritis to be caused by immune-mediated mechanism related to RA. After starting steroid therapy with methotrexate, therapeutic response was obtained to remove the stents. In the cases of ureteritis or ureteral stenosis of unknown etiology with medical history of immunological disorders, we should consider the underlying immune-activated state and try to test CE-CT and histological examination before performing surgical procedure. After excluding the common causes of ureteritis or ureteral stenosis, these tests would support the appropriate diagnosis.

Learn More >

Craniocervical Junction Calcium Pyrophosphate Deposition Causing Hypoglossal Nerve Palsy.

Learn More >

Virtual Reality-Augmented Physiotherapy for Chronic Pain in Youth: Protocol for a Randomized Controlled Trial Enhanced With a Single-Case Experimental Design.

Chronic musculoskeletal (MSK) pain is a prominent health concern, resulting in pain-related disability, loss of functioning, and high health care costs. Physiotherapy rehabilitation is a gold-standard treatment for improving functioning in youth with chronic MSK pain. However, increasing physical activity can feel unattainable for many adolescents because of pain-related fear and movement avoidance. Virtual reality (VR) offers an immersive experience that can interrupt the fear-avoidance cycle and improve engagement in physiotherapy. Despite promising initial findings, data are limited and often lack the rigor required to establish VR as an evidence-based treatment for MSK pain.

Learn More >

Search