I am a
Home I AM A Search Login

Uncategorized

Share this

Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders.

Neurological and psychiatric patients have increased dramatically in number in the past few decades. However, effective treatments for these diseases and disorders are limited due to heterogeneous and unclear pathogenic mechanisms. Therefore, further exploration of the biological aspects of the disease, and the identification of novel targets to develop alternative treatment strategies, is urgently required. Systems-level investigations have indicated the potential involvement of the brain-gut axis and intestinal microbiota in the pathogenesis and regulation of neurological and psychiatric disorders. While intestinal microbiota is crucial for maintaining host physiology, some important sensory and regulatory cells in the host should not be overlooked. Intestinal epithelial enteroendocrine cells (EECs) residing in the epithelium throughout intestine are the key regulators orchestrating the communication along the brain-gut-microbiota axis. On one hand, EECs sense changes in luminal microorganisms via microbial metabolites; on the other hand, they communicate with host body systems via neuroendocrine molecules. Therefore, EECs are believed to play important roles in neurological and psychiatric disorders. This review highlights the involvement of EECs and subtype cells, via secretion of endocrine molecules, in the development and regulation of neurological and psychiatric disorders, including Parkinson's disease (PD), schizophrenia, visceral pain, neuropathic pain, and depression. Moreover, the current paper summarizes the potential mechanism of EECs in contributing to disease pathogenesis. Examination of these mechanisms may inspire and lead to the development of new aspects of treatment strategies for neurological and psychiatric disorders in the future.

Learn More >

“”: Controlled Inhalation of THC-Predominant Cannabis Flos Improves Health-Related Quality of Life and Symptoms of Chronic Pain and Anxiety in Eligible UK Patients.

In November 2018, the UK's Home Office established a legal route for eligible patients to be prescribed cannabis-based products for medicinal use in humans (CBPMs) as unlicensed medicines. These include liquid cannabis extracts for oral administration ("oils") and dried flowers for inhalation ("flos"). Smoking of CBPMs is expressly prohibited. To date, THC-predominant cannabis flowers remain the most prescribed CBPMs in project Twenty21 (T21), the first multi-center, prospective, observational UK cannabis patient registry. This observational, prospective data review analyzes patient-reported outcome measures (PROMS) collected by T21 associated with the inhalation of KHIRON 20/1, the most prescribed CBPM in the project. PROMS collected at baseline and at subsequent 3-month follow-up included health-related quality of life (HRQoL), general mood, and sleep. Condition-specific measures of illness severity were performed with the Brief Pain Inventory Short Form (BPI-SF) and the Generalized Anxiety Disorder 7-Item Scale (GAD-7). Participants (N = 344) were mostly males (77.6%, average age = 38.3) diagnosed mainly with chronic pain (50.9%) and anxiety-related disorders (25.3%). Inhalation of KHIRON 20/1 was associated with a marked increase in self-reported HRQoL, general mood, and sleep (N = 344; < 0.001). Condition-specific assessments showed significant improvements in pain severity (T = 6.67; < 0.001) and interference (T = 7.19; < 0.001) in patients using KHIRON 20/1 for chronic pain (N = 174). Similar results were found for patients diagnosed with anxiety-related disorders (N = 107; T = 12.9; < 0.001). Our results indicate that controlled inhalation of pharmaceutical grade, THC-predominant cannabis flos is associated with a significant improvement in patient-reported pain scores, mood, anxiety, sleep disturbances and overall HRQoL in a treatment-resistant clinical population.

Learn More >

Phenotyping Post-COVID Pain as a Nociceptive, Neuropathic, or Nociplastic Pain Condition.

Pain after an acute Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) condition (post-COVID pain) is becoming a new healthcare emergency. Precision medicine refers to an evidence-based method of grouping patients based on their diagnostic/symptom presentation and then tailoring specific treatments accordingly. Evidence suggests that post-COVID pain can be categorized as nociceptive (i.e., pain attributable to the activation of the peripheral receptive terminals of primary afferent neurons in response to noxious chemical, mechanical, or thermal stimuli), neuropathic (i.e., pain associated with a lesion or disease of the somatosensory nervous system and limited to a "neuroanatomically plausible" distribution of the system), nociplastic (i.e., pain arising from altered nociception despite no clear evidence of actual or threatened tissue damage causing the activation of peripheral nociceptors or evidence for disease or lesion of the somatosensory system causing the pain), or mixed type (when two pain phenotypes co-exist). Each of these pain phenotypes may require a different treatment approach to maximize treatment effectiveness. Accordingly, the ability to classify post-COVID pain patients into one of these phenotypes would likely be critical for producing successful treatment outcomes. The 2021 International Association for the Study of Pain (IASP) clinical criteria and grading system provide a framework for classifying pain within a precision pain medicine approach. Here we present data supporting the possibility of grouping patients with post-COVID pain into pain phenotypes, using the 2021 IASP classification criteria, with a specific focus on nociplastic pain, which is probably the primary mechanism involved in post-COVID pain. Nociplastic pain, which is usually associated with comorbid symptomology (e.g., poor sleep quality, fatigue, cognitive-emotional disturbances, etc.) and is considered to be more difficult to treat than other pain types, may require a more nuanced multimodal treatment approach to achieve better treatment outcomes.

Learn More >

Is Omalizumab Related to Ear and Labyrinth Disorders? A Disproportionality Analysis Based on a Global Pharmacovigilance Database.

Asthma is a chronic disease, characterized by reversible airway obstruction, hypersensitivity reactions, and inflammation. Oral corticosteroids are an important treatment option for patients with severe or steroid-resistant asthma. Biologics for asthma are recommended in patients with severe asthma, owing to their steroid-sparing effect as well as their ability to reduce the severity and aggravation of uncontrolled asthma. Most clinical trials of omalizumab in patients with asthma have suggested its tolerability and safety. However, some studies reported eosinophilic comorbidities in the ear, nose, and throat during omalizumab treatment, particularly eosinophilic otitis media. This study examined the relationship between ear disorders and omalizumab compared with that of other biologics for asthma using a large real-world database.

Learn More >

Prolonged Suppression of Neuropathic Hypersensitivity upon Neurostimulation of the Posterior Insula in Mice.

Neurostimulation-based therapeutic approaches are emerging as alternatives to pharmacological drugs, but need further development to optimize efficacy and reduce variability. Despite its key relevance to pain, the insular cortex has not been explored in cortical neurostimulation approaches. Here, we developed an approach to perform repetitive transcranial direct current stimulation of the posterior insula (PI tDCS) and studied its impact on sensory and aversive components of neuropathic pain and pain-related anxiety and the underlying neural circuitry in mice using behavioral methods, pharmacological interventions and the expression of the activity-induced gene product, Fos. We observed that repetitive PI tDCS strongly attenuates the development of neuropathic mechanical allodynia and also reverses chronically established mechanical and cold allodynia for several weeks post-treatment by employing descending opioidergic antinociceptive pathways. Pain-related anxiety, but not pain-related aversion, were inhibited by PI tDCS. These effects were associated with a long-term suppression in the activity of key areas involved in pain modulation, such as the cingulate, prefrontal and motor cortices. These data uncover the significant potential of targeting the insular cortex with the objective of pain relief and open the way for more detailed mechanistic analyses that will contribute to improving cortical neurostimulation therapies for use in the clinical management of pain.

Learn More >

Diagnosis and Management of Pelvic Venous Disorders in Females.

Pelvic venous pathologies in females are responsible for chronic symptoms grouped under the term pelvic congestion syndrome, which includes chronic pelvic pain, perineal heaviness, urgency, and postcoital pain, along with vulvar, perineal, and lower limb varicose veins. These conditions are also associated with ovarian and pelvic venous reflux and venous obstruction. This review aimed to explore the clinical and imaging modalities for diagnosing pelvic congestion syndrome, pelvic venous pathologies, their therapeutic management, and their outcomes.

Learn More >

Febrile Seizures Cause Depression and Anxiogenic Behaviors in Rats.

Febrile seizure (FS) is a common type of seizure occurring in human during infancy and childhood. Although an epileptic seizure is associated with psychiatric disorders and comorbid diseases such as depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine, the causal relationship between FS and psychiatric disorders is poorly understood. The objective of the current study was to investigate the relationship of FS occurrence in childhood with the pathogenesis of anxiety disorder and depression using an FS rat model. We induced febrile seizures in infantile rats (11 days postnatal) using a mercury vapor lamp. At 3 weeks and 12 weeks after FS induction, we examined behaviors and recorded local field potentials (LFPs) to assess anxiety and depression disorder. Interestingly, after FS induction in infantile rats, anxiogenic behaviors and depression-like phenotypes were found in both adult and juvenile FS rats. The analysis of LFPs revealed that 4-7 Hz hippocampal theta rhythm, a neural oscillatory marker for anxiety disorder, was significantly increased in FS rats compared with their wild-type littermates. Taken together, our findings suggest that FS occurrence in infants is causally related to increased levels of anxiety-related behaviors and depression-like symptoms in juvenile and adult rodents.

Learn More >

Network Analysis Reveals That Headache-Related, Psychological and Psycho-Physical Outcomes Represent Different Aspects in Women with Migraine.

Evidence supports that migraine is a complex pain condition with different underlying mechanisms. We aimed to quantify potential associations between demographic, migraine-related, and psychophysical and psychophysical variables in women with migraine. Demographic (age, height, and weight), migraine-related (intensity, frequency, and duration), related-disability (Migraine Disability Assessment Scale, Headache Disability Inventory), psychological (Hospital Anxiety and Depression Scale), and psycho-physical (pressure pain thresholds -PPTs-) variables were collected from a sample of 74 women suffering from migraine. We calculated adjusted correlations between the variables by using a network analysis. Additionally, we also calculated centrality indices to identify the connectivity among the variables within the network and the relevance of each variable in the network. Multiple positive correlations (ρ) between PPTs were observed ranging from 0.1654 (C5-C6 and tibialis anterior) to 0.40 (hand and temporalis muscle). The strongest associations within the network were those between migraine attack frequency and diagnosis of chronic migraine (ρ = 0.634) and between the HDI-E and HDI-P (ρ = 0.545). The node with the highest strength and betweenness centrality was PPT at the second metacarpal, whereas the node with the highest harmonic centrality was PPT at the tibialis anterior muscle. This is the first study applying a network analysis to understand the underlying mechanisms in migraine. The identified network revealed that a model where each subgroup of migraine-related, psychological, and psycho-physical variables showed no interaction between each variable. Current findings could have clinical implications for developing multimodal treatments targeting the identified mechanisms.

Learn More >

Activity and Stability of Panx1 Channels in Astrocytes and Neuroblastoma Cells Are Enhanced by Cholesterol Depletion.

Pannexin1 (Panx1) is expressed in both neurons and glia where it forms ATP-permeable channels that are activated under pathological conditions such as epilepsy, migraine, inflammation, and ischemia. Membrane lipid composition affects proper distribution and function of receptors and ion channels, and defects in cholesterol metabolism are associated with neurological diseases. In order to understand the impact of membrane cholesterol on the distribution and function of Panx1 in neural cells, we used fluorescence recovery after photobleaching (FRAP) to evaluate its mobility and electrophysiology and dye uptake to assess channel function. We observed that cholesterol extraction (using methyl-β-cyclodextrin) and inhibition of its synthesis (lovastatin) decreased the lateral diffusion of Panx1 in the plasma membrane. Panx1 channel activity (dye uptake, ATP release and ionic current) was enhanced in cholesterol-depleted Panx1 transfected cells and in wild-type astrocytes compared to non-depleted or Panx1 null cells. Manipulation of cholesterol levels may, therefore, offer a novel strategy by which Panx1 channel activation might modulate various pathological conditions.

Learn More >

The Onset of Subtalar Joint Monoarthritis in a Patient with Rheumatoid Arthritis.

The involvement of the subtalar joint is uncommon in the early stages of rheumatoid arthritis (RA). We report a case of a 47-year-old female who had RA with isolated subtalar joint arthritis. The clinical history, magnetic resonance imaging, and pathological findings of the patient are presented. A careful evaluation of the patients for chronic ankle-to-heel pain should be conducted, and concomitant evaluation for inflammatory arthritis, including RA, should be considered.

Learn More >

Search