I am a
Home I AM A Search Login

Papers of the Week


Papers: 13 Jun 2020 - 19 Jun 2020


Animal Studies, Pharmacology/Drug Development


2020 Jun 11


Biomedicines


8


6

Characterization of Synthetic Tf2 as a Na1.3 Selective Pharmacological Probe.

Authors

Israel MR, Dash TS, Bothe SN, Robinson SD, Deuis JR, Craik DJ, Lampert A, Vetter I, Durek T
Biomedicines. 2020 Jun 11; 8(6).
PMID: 32545167.

Abstract

Na1.3 is a subtype of the voltage-gated sodium channel family. It has been implicated in the pathogenesis of neuropathic pain, although the contribution of this channel to neuronal excitability is not well understood. Tf2, a β-scorpion toxin previously identified from the venom of , has been reported to selectively activate Na1.3. Here, we describe the activity of synthetic Tf2 and assess its suitability as a pharmacological probe for Na1.3. As described for the native toxin, synthetic Tf2 (1 µM) caused early channel opening, decreased the peak current, and shifted the voltage dependence of Na1.3 activation in the hyperpolarizing direction by -11.3 mV, with no activity at Na1.1, Na1.2, and Na1.4-Na1.8. Additional activity was found at Na1.9, tested using the hNav1.9_C4 chimera, where Tf2 (1 µM) shifted the voltage dependence of activation by -6.3 mV. In an attempt to convert Tf2 into an Na1.3 inhibitor, we synthetized the analogue Tf2[S14R], a mutation previously described to remove the excitatory activity of related β-scorpion toxins. Indeed, Tf2[S14R](10 µM) had reduced excitatory activity at Na1.3, although it still caused a small -5.8 mV shift in the voltage dependence of activation. Intraplantar injection of Tf2 (1 µM) in mice caused spontaneous flinching and swelling, which was not reduced by the Na1.1/1.3 inhibitor ICA-121431 nor in Na1.9 mice, suggesting off-target activity. In addition, despite a loss of excitatory activity, intraplantar injection of Tf2[S14R](10 µM) still caused swelling, providing strong evidence that Tf2 has additional off-target activity at one or more non-neuronal targets. Therefore, due to activity at Na1.9 and other yet to be identified target(s), the use of Tf2 as a selective pharmacological probe may be limited.