I am a
Home I AM A Search Login

Basic Neurobiology, Pharmacology/Drug Development

Share this

The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow.

Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13-20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.

Learn More >

Pharmacological effects of a complex α-bisabolol/β-cyclodextrin in a mice arthritis model with involvement of IL-1β, IL-6 and MAPK.

Inflammatory arthritis is the most prevalent chronic inflammatory disease worldwide. The pathology of the disease is characterized by increased inflammation and oxidative stress, which leads to chronic pain and functional loss in the joints. Conventional anti-arthritic drugs used to relieve pain and other arthritic symptoms often cause severe side effects. α-bisabolol (BIS) is a sesquiterpene that exhibits high anti-inflammatory potential and a significant antinociceptive effect. This study evaluates the anti-arthritic, anti-inflammatory and antihyperalgesic effects of BIS alone and in a β-cyclodextrin (βCD/BIS) inclusion complex in a CFA-induced arthritis model. Following the intra-articular administration of CFA, male mice were treated with vehicle, BIS and βCD/BIS (50 mg/kg, p.o.) or a positive control and pain-related behaviors, knee edema and inflammatory and oxidative parameters were evaluated on days 4, 11, 18 and/or 25. Ours findings shows that the oral administration of BIS and βCD/BIS significantly attenuated spontaneous pain-like behaviors, mechanical hyperalgesia, grip strength deficit and knee edema induced by repeated injections of CFA, reducing the joint pain and functional disability associated with arthritis. BIS and βCD/BIS also inhibited the generation of inflammatory and oxidative markers in the knee and blocked MAPK in the spinal cord. In addition, ours results also showed that the incorporation of BIS in cyclodextrin as a drug delivery system improved the pharmacological profile of this substance. Therefore, these results contribute to the pharmacological knowledge of BIS and demonstrated that this terpene appears to be able to mitigate deleterious symptoms of arthritis.

Learn More >